dist_default.py 24.8 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14
# Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License

15
from .common import DistributedOperatorImplContainer
16
from .common import DistributedOperatorImpl
17
from .common import register_distributed_operator_impl_container
18
from .common import gradient_synchronization
J
JZ-LIANG 已提交
19
from .common import register_distributed_operator_impl, is_parameter_related
20 21
from ..utils import is_dim_shard
from ..utils import is_dim_replicate
22
from ..utils import is_valid_list_index, is_prim_op
23 24 25
from ..utils import compute_compatible_dim_mapping
from ..utils import compute_compatible_dims_mapping
from ..utils import compute_compatible_and_update_dim_mapping
26
from ..utils import set_dist_op_desc_original_id
27
from ..dist_attribute import OperatorDistributedAttribute
28
from paddle.fluid import core, unique_name
J
Jiabin Yang 已提交
29
from paddle.fluid.framework import _non_static_mode
30 31 32
from paddle.fluid.framework import Program, Parameter, Variable, program_guard
from paddle.fluid.data_feeder import check_variable_and_dtype, check_dtype
from paddle.distributed.fleet.meta_optimizers.common import OpRole, OP_ROLE_KEY, OP_ROLE_VAR_KEY
33
from ..process_group import new_process_group
34
from ..utils import _get_comm_group, _get_corresponding_rank
35 36 37
from ..cost import _g_op_cost_factory
from ..cost import build_comp_desc_from_dist_op, build_dp_costs
from ..cost import build_comp_costs_from_descs
38

39 40
__op_not_need_param_init__ = ["while", "cond"]

41

42 43 44 45 46 47 48 49 50 51 52 53
def prim_operator_data_parallel_functor(ctx, src_op):
    dist_op_context = ctx.dist_op_context
    main_block = dist_op_context.work_block
    startup_block = dist_op_context.startup_block

    var_name = src_op.output_arg_names[0]
    if var_name in ctx.grads_params:
        assert var_name not in ctx.synced_gradient, "in primtive mode, grad is already {} synced".format(
            var_name)
        ctx.synced_gradient.add(var_name)
        sync_group = new_process_group(ctx.data_parallel_group)

54 55 56 57 58 59 60 61
        allreduce_op = main_block.append_op(type='c_allreduce_sum',
                                            inputs={'X': [var_name]},
                                            outputs={'Out': [var_name]},
                                            attrs={
                                                'ring_id': sync_group.id,
                                                'use_calc_stream': True,
                                                OP_ROLE_KEY: OpRole.Backward
                                            })
62 63 64

        param = ctx.grads_params[var_name]
        startup_block = dist_op_context.startup_block
65 66 67 68 69 70 71 72 73
        new_op = startup_block.append_op(type='c_broadcast',
                                         inputs={'X': [param]},
                                         outputs={'Out': [param]},
                                         attrs={
                                             'ring_id': sync_group.id,
                                             'root': 0,
                                             'use_calc_stream': True,
                                             OP_ROLE_KEY: OpRole.Forward
                                         })
74 75 76 77 78 79 80 81 82 83 84 85 86 87 88

        grad_var = main_block.var(var_name)
        dims_mapping = ctx.get_tensor_dist_attr_for_program(
            grad_var).dims_mapping
        dist_attr = ctx.get_op_dist_attr_for_program(src_op)
        process_mesh = dist_attr.process_mesh
        op_attr = OperatorDistributedAttribute()
        op_attr.process_mesh = process_mesh
        op_attr.set_output_dims_mapping(grad_var.name, dims_mapping)
        op_attr.set_input_dims_mapping(grad_var.name, dims_mapping)
        ctx.set_op_dist_attr_for_program(allreduce_op, op_attr)

    return


89
class DistributedDefault(DistributedOperatorImplContainer):
90

91 92
    def __init__(self, op_type):
        super(DistributedDefault, self).__init__(op_type)
93 94


95
register_distributed_operator_impl_container(DistributedDefault("default"))
96 97


98
# Replicated Default
99
class DistributedDefaultImpl0(DistributedOperatorImpl):
100

101
    def __init__(self, name):
102
        super(DistributedDefaultImpl0, self).__init__(name)
103 104 105
        self._forward_implemented = True
        self._backward_implemented = True

106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173
    def calc_cost(self, op_role, dist_op, ctx, cluster):
        """Calculate the cost by the op role."""
        cost = None
        if int(op_role) == int(OpRole.Backward):
            cost = self.calc_bwd_cost(dist_op, ctx, cluster)
        else:
            cost = self.calc_fwd_cost(dist_op, ctx, cluster)
        assert cost is not None
        return cost

    def calc_fwd_cost(self, dist_op, ctx, cluster):
        # calc comp op cost
        desc_mapping = build_comp_desc_from_dist_op(dist_op=dist_op,
                                                    dist_context=ctx)
        processes = dist_op.dist_attr.process_mesh.processes
        op_type = dist_op.serial_op.type
        cost_mapping = build_comp_costs_from_descs(_g_op_cost_factory[op_type],
                                                   ctx, processes, desc_mapping,
                                                   cluster)
        res_cost = [cost_mapping]

        return res_cost

    def calc_bwd_cost(self, dist_op, ctx, cluster):
        # calc comp op cost
        res = []
        desc_mapping = build_comp_desc_from_dist_op(dist_op=dist_op,
                                                    dist_context=ctx)
        dist_attr = dist_op.dist_attr
        process_mesh = dist_attr.process_mesh
        processes = process_mesh.processes
        backward_op = dist_op.serial_op
        op_type = backward_op.type
        cost_mapping = build_comp_costs_from_descs(_g_op_cost_factory[op_type],
                                                   ctx, processes, desc_mapping,
                                                   cluster)
        res.append(cost_mapping)

        main_block = backward_op.block
        vars = main_block.vars
        need_gradient_allreduce = False
        for input_name in backward_op.desc.input_names():
            for varname in backward_op.desc.input(input_name):
                if "@GRAD" not in varname and not is_parameter_related(
                        varname, main_block):
                    var_dim_mapping = dist_attr.get_input_dims_mapping(varname)
                    mesh_shape = process_mesh.topology
                    batch_size_axis = var_dim_mapping[0]
                    if batch_size_axis > -1 and mesh_shape[batch_size_axis] > 1:
                        need_gradient_allreduce = True
                        break

        if need_gradient_allreduce:
            for input_name in backward_op.desc.input_names():
                for varname in backward_op.desc.input(input_name):
                    if "@GRAD" not in varname and is_parameter_related(
                            varname, main_block):
                        var_dim_mapping = dist_attr.get_input_dims_mapping(
                            varname)
                        mesh_shape = process_mesh.topology
                        batch_size_axis = var_dim_mapping[0]
                        parallel_axis = batch_size_axis
                        attrs = {"use_calc_stream": True}
                        var_names = [varname + "@GRAD"]
                        build_dp_costs(res, dist_op, ctx, var_names, attrs,
                                       parallel_axis, cluster)
        return res

174
    def is_input_compatible(self, dist_op):
175 176
        op_desc = dist_op.serial_op.desc
        op_dist_attr = dist_op.dist_attr
177
        batch_dim_mappings = []
178 179 180 181
        input_names = op_desc.input_names()
        xshape_arg_names = []
        if "XShape" in input_names:
            xshape_arg_names = op_desc.input("XShape")
182 183 184
        for arg_name in op_desc.input_arg_names():
            serial_tensor = dist_op.get_serial_input(arg_name)
            dims_mapping = op_dist_attr.get_input_dims_mapping(arg_name)
185 186 187 188
            if serial_tensor.is_parameter:
                for mapping in dims_mapping:
                    if mapping != -1:
                        return False
189
                continue
190 191 192 193 194
            if arg_name not in xshape_arg_names:
                if len(dims_mapping) > 1:
                    for mapping in dims_mapping[1:]:
                        if mapping != -1:
                            return False
195 196
                if len(dims_mapping) >= 1:
                    batch_dim_mappings.append(dims_mapping[0])
197 198 199 200 201 202 203
            else:
                if dims_mapping[0] != -1:
                    return False
                if len(dims_mapping) > 2:
                    for mapping in dims_mapping[2:]:
                        if mapping != -1:
                            return False
204 205 206 207 208 209
                if len(dims_mapping) >= 2:
                    batch_dim_mappings.append(dims_mapping[1])

        if compute_compatible_dim_mapping(batch_dim_mappings) is None:
            return False

210
        return True
211

212
    def is_output_compatible(self, dist_op):
213 214 215
        op_desc = dist_op.serial_op.desc
        op_dist_attr = dist_op.dist_attr
        output_names = op_desc.output_names()
216
        batch_dim_mappings = []
217 218 219 220 221 222
        xshape_arg_names = []
        if "XShape" in output_names:
            xshape_arg_names = op_desc.output("XShape")
        for arg_name in op_desc.output_arg_names():
            serial_tensor = dist_op.get_serial_output(arg_name)
            dims_mapping = op_dist_attr.get_output_dims_mapping(arg_name)
223 224 225 226
            if serial_tensor.is_parameter:
                for mapping in dims_mapping:
                    if mapping != -1:
                        return False
227
                continue
228 229 230 231 232
            if arg_name not in xshape_arg_names:
                if len(dims_mapping) > 1:
                    for mapping in dims_mapping[1:]:
                        if mapping != -1:
                            return False
233 234
                if len(dims_mapping) >= 1:
                    batch_dim_mappings.append(dims_mapping[0])
235 236 237 238 239 240 241
            else:
                if dims_mapping[0] != -1:
                    return False
                if len(dims_mapping) > 2:
                    for mapping in dims_mapping[2:]:
                        if mapping != -1:
                            return False
242 243 244 245 246 247
                if len(dims_mapping) >= 2:
                    batch_dim_mappings.append(dims_mapping[1])

        if compute_compatible_dim_mapping(batch_dim_mappings) is None:
            return False

248 249 250 251 252 253 254
        return True

    def is_auto_compatible(self, dist_op):
        op_desc = dist_op.serial_op.desc
        op_dist_attr = dist_op.dist_attr
        batch_dim_mappings = []
        # Check input compatibility
255 256 257 258
        input_names = op_desc.input_names()
        xshape_arg_names = []
        if "XShape" in input_names:
            xshape_arg_names = op_desc.input("XShape")
259 260
        for arg_name in op_desc.input_arg_names():
            serial_tensor = dist_op.get_serial_input(arg_name)
261
            dims_mapping = op_dist_attr.get_input_dims_mapping(arg_name)
262
            if serial_tensor is not None and serial_tensor.is_parameter:
263 264 265
                for mapping in dims_mapping:
                    if mapping != -1:
                        return False
266
                continue
267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282
            if arg_name not in xshape_arg_names:
                if len(dims_mapping) > 1:
                    for mapping in dims_mapping[1:]:
                        if mapping != -1:
                            return False
                if len(dims_mapping) >= 1:
                    batch_dim_mappings.append(dims_mapping[0])
            else:
                if dims_mapping[0] != -1:
                    return False
                if len(dims_mapping) > 2:
                    for mapping in dims_mapping[2:]:
                        if mapping != -1:
                            return False
                if len(dims_mapping) >= 2:
                    batch_dim_mappings.append(dims_mapping[1])
283 284 285 286 287 288 289 290

        # Check output compatibility
        output_names = op_desc.output_names()
        xshape_arg_names = []
        if "XShape" in output_names:
            xshape_arg_names = op_desc.output("XShape")
        for arg_name in op_desc.output_arg_names():
            serial_tensor = dist_op.get_serial_output(arg_name)
291
            dims_mapping = op_dist_attr.get_output_dims_mapping(arg_name)
292
            if serial_tensor is not None and serial_tensor.is_parameter:
293 294 295
                for mapping in dims_mapping:
                    if mapping != -1:
                        return False
296 297 298 299 300 301
                continue
            if arg_name not in xshape_arg_names:
                if len(dims_mapping) > 1:
                    for mapping in dims_mapping[1:]:
                        if mapping != -1:
                            return False
302 303
                if len(dims_mapping) >= 1:
                    batch_dim_mappings.append(dims_mapping[0])
304 305 306 307 308 309 310
            else:
                if dims_mapping[0] != -1:
                    return False
                if len(dims_mapping) > 2:
                    for mapping in dims_mapping[2:]:
                        if mapping != -1:
                            return False
311 312
                if len(dims_mapping) >= 2:
                    batch_dim_mappings.append(dims_mapping[1])
313 314 315 316 317 318 319

        # Check batch dim mapping compatibility
        if not all(batch_dim_mappings[0] == dim_mapping
                   for dim_mapping in batch_dim_mappings):
            return False

        return True
320

321
    def update_dims_mapping(self, dist_op):
322 323 324
        changed = False
        op_desc = dist_op.serial_op.desc
        op_dist_attr = dist_op.dist_attr
325 326

        if op_desc.type() == "while":
327
            return False
328 329 330 331 332 333

        input_names = op_desc.input_names()
        input_xshape_arg_names = []
        if "XShape" in input_names:
            input_xshape_arg_names = op_desc.input("XShape")

334
        output_names = op_desc.output_names()
335
        output_xshape_arg_names = []
336
        if "XShape" in output_names:
337 338
            output_xshape_arg_names = op_desc.output("XShape")

339 340 341 342 343 344
        batch_dim_mappings = []
        for arg_name in op_desc.input_arg_names():
            serial_tensor = dist_op.get_serial_input(arg_name)
            if serial_tensor.is_parameter:
                continue
            dims_mapping = op_dist_attr.get_input_dims_mapping(arg_name)
345 346 347 348 349
            if arg_name not in input_xshape_arg_names:
                if len(dims_mapping) >= 1:
                    batch_dim_mappings.append(dims_mapping[0])
            else:
                batch_dim_mappings.append(dims_mapping[1])
350
        for arg_name in op_desc.output_arg_names():
351
            if op_desc.type() == 'fill_any_like':
352 353
                input_tensor = dist_op.get_serial_input(
                    op_desc.input_arg_names()[0])
354 355
                if input_tensor.is_parameter:
                    continue
356 357 358 359
            serial_tensor = dist_op.get_serial_output(arg_name)
            if serial_tensor.is_parameter:
                continue
            dims_mapping = op_dist_attr.get_output_dims_mapping(arg_name)
360
            if arg_name not in output_xshape_arg_names:
361 362
                if len(dims_mapping) >= 1:
                    batch_dim_mappings.append(dims_mapping[0])
363 364 365
            else:
                batch_dim_mappings.append(dims_mapping[1])

366 367 368
        if not batch_dim_mappings:
            return changed

369 370
        compatible_dim_mapping = compute_compatible_dim_mapping(
            batch_dim_mappings)
371 372 373
        if compatible_dim_mapping is None:
            return False

374 375 376 377 378
        for arg_name in op_desc.input_arg_names():
            serial_tensor = dist_op.get_serial_input(arg_name)
            if serial_tensor.is_parameter:
                continue
            dims_mapping = op_dist_attr.get_input_dims_mapping(arg_name)
379 380 381 382 383 384 385 386 387 388
            if arg_name not in input_xshape_arg_names:
                if len(dims_mapping) >= 1 and \
                    compatible_dim_mapping != dims_mapping[0]:
                    dims_mapping[0] = compatible_dim_mapping
                    changed = True
            else:
                if len(dims_mapping) >= 2 and \
                    compatible_dim_mapping != dims_mapping[1]:
                    dims_mapping[1] = compatible_dim_mapping
                    changed = True
389
        for arg_name in op_desc.output_arg_names():
390
            if op_desc.type() == 'fill_any_like':
391 392
                input_tensor = dist_op.get_serial_input(
                    op_desc.input_arg_names()[0])
393 394
                if input_tensor.is_parameter:
                    continue
395 396
            if op_desc.type() in ["shape", "slice"]:
                continue
397 398 399 400
            serial_tensor = dist_op.get_serial_output(arg_name)
            if serial_tensor.is_parameter:
                continue
            dims_mapping = op_dist_attr.get_output_dims_mapping(arg_name)
401
            if arg_name not in output_xshape_arg_names:
402 403
                if len(dims_mapping
                       ) >= 1 and compatible_dim_mapping != dims_mapping[0]:
404 405 406
                    dims_mapping[0] = compatible_dim_mapping
                    changed = True
            else:
407 408
                if len(dims_mapping
                       ) >= 2 and compatible_dim_mapping != dims_mapping[1]:
409 410 411 412
                    dims_mapping[1] = compatible_dim_mapping
                    changed = True

        return changed
413 414 415

    @staticmethod
    def forward(ctx, *args, **kwargs):
416
        dist_op_context = ctx.dist_op_context
417 418 419 420
        main_block = dist_op_context.work_block
        startup_block = dist_op_context.startup_block
        src_op = dist_op_context.cur_src_op
        rank_id = dist_op_context.rank_id
421

422
        # check validation of inputs / outputs
423 424 425 426 427 428 429 430 431 432 433 434 435 436 437
        for input_name in src_op.desc.input_names():
            assert input_name in kwargs, "input [{}] is not given".format(
                input_name)
            assert len(kwargs[input_name]) == len(
                src_op.desc.input(input_name)
            ), "number of tensor for input [{}] is not match".format(input_name)
        for output_name in src_op.desc.output_names():
            assert output_name in kwargs, "input [{}] is not given".format(
                output_name)
            assert len(kwargs[output_name]) == len(
                src_op.desc.output(output_name)
            ), "number of tensor for input [{}] is not match".format(
                output_name)

        # replicate op in dist program
438
        dist_op_desc = main_block.append_op(type='nop').desc
439
        dist_op_desc.copy_from(src_op.desc)
440
        set_dist_op_desc_original_id(dist_op_desc, src_op.desc, ctx)
441 442 443 444 445
        for input_name in src_op.desc.input_names():
            dist_op_desc.set_input(input_name, kwargs[input_name])
        for output_name in src_op.desc.output_names():
            dist_op_desc.set_output(output_name, kwargs[output_name])

446 447 448 449 450 451
        # data parallel synchronization for primtive operators
        from paddle.incubate.autograd import prim_enabled
        if prim_enabled():
            assert is_prim_op(src_op)
            prim_operator_data_parallel_functor(ctx, src_op)
            return
452 453

        # param initialization sync
454 455 456
        if src_op.type in __op_not_need_param_init__:
            return

457 458 459
        for varname in dist_op_desc.input_arg_names():
            if startup_block.has_var(varname) and startup_block.var(
                    varname
460 461
            ).is_parameter and varname not in dist_op_context.already_init_sync_vars:
                dist_op_context.already_init_sync_vars.add(varname)
462
                param = startup_block.var(varname)
463 464 465
                param_dist_attr = ctx.get_tensor_dist_attr_for_program(param)
                process_mesh = param_dist_attr.process_mesh
                dims_mapping = param_dist_attr.dims_mapping
466 467

                # FIXME (JZ-LIANG) Remove this hack to support any op mesh group for Pipeline Parallelism
468 469 470
                if rank_id not in process_mesh.processes:
                    rank_id = _get_corresponding_rank(ctx, process_mesh,
                                                      rank_id)
471

472
                # NOTE all not splited axis should be presented in mesh
473 474 475 476
                for axis, size in enumerate(process_mesh.topology):
                    if size <= 1 or axis in dims_mapping:
                        pass
                    else:
477 478 479
                        group_ranks = _get_comm_group(process_mesh.processes,
                                                      process_mesh.topology,
                                                      axis, rank_id)
480 481
                        sync_group = new_process_group(group_ranks)

482 483 484 485 486 487 488 489 490 491 492 493 494
                        new_op = startup_block.append_op(type='c_broadcast',
                                                         inputs={'X': param},
                                                         outputs={'Out': param},
                                                         attrs={
                                                             'ring_id':
                                                             sync_group.id,
                                                             'root':
                                                             0,
                                                             'use_calc_stream':
                                                             True,
                                                             OP_ROLE_KEY:
                                                             OpRole.Forward
                                                         })
495 496

                        # set distributed attribute
497 498
                        op_attr = OperatorDistributedAttribute()
                        op_attr.process_mesh = process_mesh
499 500 501
                        op_attr.set_output_dims_mapping(param.name,
                                                        dims_mapping)
                        op_attr.set_input_dims_mapping(param.name, dims_mapping)
502
                        ctx.set_op_dist_attr_for_program(new_op, op_attr)
503 504 505 506 507

    @staticmethod
    def backward(ctx, *args, **kwargs):

        # by now the backward function only insert the gradient allreduce for dist op itself
508
        dist_op_context = ctx.dist_op_context
509 510
        main_block = dist_op_context.work_block
        backward_op = dist_op_context.cur_src_op
511
        dist_attr = ctx.get_op_dist_attr_for_program(backward_op)
512 513
        assert dist_attr is not None, "backward op [{}] don't have dist attribute !".format(
            str(backward_op))
514
        rank_id = dist_op_context.rank_id
515

516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531
        # check validation of inputs / outputs
        for input_name in backward_op.desc.input_names():
            assert input_name in kwargs, "input [{}] is not given".format(
                input_name)
            assert len(kwargs[input_name]) == len(
                backward_op.desc.input(input_name)
            ), "number of tensor for input [{}] is not match".format(input_name)
        for output_name in backward_op.desc.output_names():
            assert output_name in kwargs, "input [{}] is not given".format(
                output_name)
            assert len(kwargs[output_name]) == len(
                backward_op.desc.output(output_name)
            ), "number of tensor for input [{}] is not match".format(
                output_name)

        # replicate op in dist program
532
        dist_op_desc = main_block.append_op(type='nop').desc
533
        dist_op_desc.copy_from(backward_op.desc)
534 535
        # Refer to the related dist op
        set_dist_op_desc_original_id(dist_op_desc, backward_op.desc, ctx)
536 537 538 539 540
        for input_name in backward_op.desc.input_names():
            dist_op_desc.set_input(input_name, kwargs[input_name])
        for output_name in backward_op.desc.output_names():
            dist_op_desc.set_output(output_name, kwargs[output_name])

541 542
        # data parallel gradient synchronization
        act_grad_names = []
543 544
        for input_name in backward_op.desc.input_names():
            for varname in backward_op.desc.input(input_name):
J
JZ-LIANG 已提交
545 546
                if "@GRAD" not in varname and not is_parameter_related(
                        varname, main_block):
547
                    act_grad_names.append(varname)
548

549 550 551 552 553 554 555 556 557 558 559 560
        out_grad_names = []
        for output_name in backward_op.desc.output_names():
            for varname in backward_op.desc.output(output_name):
                if varname in kwargs["grad_var_to_var"]:
                    fwd_name = kwargs["grad_var_to_var"][varname]
                    if fwd_name not in main_block.vars:
                        continue
                    if is_parameter_related(fwd_name, main_block):
                        out_grad_names.append(varname)

        gradient_synchronization(ctx, backward_op, act_grad_names,
                                 out_grad_names, rank_id)
561 562 563 564


register_distributed_operator_impl(
    "default", DistributedDefaultImpl0("replicate_parallel"))