roi_align_op_npu.cc 7.6 KB
Newer Older
S
shiyutang 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92
/* Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved.
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
    http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */

#include "paddle/fluid/operators/roi_align_op.h"
#include "paddle/fluid/operators/math/math_function.h"
#include "paddle/fluid/operators/npu_op_runner.h"

namespace paddle {
namespace operators {
using Tensor = framework::Tensor;

template <typename DeviceContext, typename T>
class ROIAlignNPUKernel : public framework::OpKernel<T> {
 public:
  void Compute(const framework::ExecutionContext& ctx) const override {
    auto* X = ctx.Input<framework::Tensor>("X");              // (B,C,H,W)
    auto* ROIs = ctx.Input<framework::Tensor>("ROIs");        // (N,4)
    auto* ROIsNum = ctx.Input<framework::Tensor>("RoisNum");  // [0 1 1 2 2 2]
    auto* Out = ctx.Output<framework::Tensor>("Out");
    Out->mutable_data<T>(ctx.GetPlace());

    auto spatial_scale = ctx.Attr<float>("spatial_scale");
    auto pooled_height = ctx.Attr<int>("pooled_height");
    auto pooled_width = ctx.Attr<int>("pooled_width");
    auto sample_num = ctx.Attr<int>("sampling_ratio");
    auto aligned = ctx.Attr<bool>("aligned");
    auto roi_end_mode = 0;
    PADDLE_ENFORCE_EQ(
        aligned, false,
        platform::errors::InvalidArgument(
            "ROIAlignNPU only support Aligned attribute equaled to False"));

    framework::NPUAttributeMap attr_roi = {{"spatial_scale", spatial_scale},
                                           {"pooled_height", pooled_height},
                                           {"pooled_width", pooled_width},
                                           {"sample_num", sample_num},
                                           {"roi_end_mode", roi_end_mode}};

    auto stream =
        ctx.template device_context<paddle::platform::NPUDeviceContext>()
            .stream();

    // Combine *ROIsNum with ROIs to get new ROIs
    // change roisnum's datatype & resize
    int dtype =
        static_cast<int>(ConvertToNpuDtype(framework::proto::VarType::FP32));
    framework::NPUAttributeMap attr_cast = {{"dst_type", dtype}};
    Tensor ROIsNum_fp(ROIs->type());
    ROIsNum_fp.Resize(framework::make_ddim({ROIs->dims()[0], 1}));
    ROIsNum_fp.mutable_data<T>(ctx.GetPlace());

    const auto& runner_c =
        NpuOpRunner("Cast", {*ROIsNum}, {ROIsNum_fp}, attr_cast);
    runner_c.Run(stream);

    // concate to make (N, 5)
    std::vector<paddle::framework::Tensor> x_list;
    x_list.push_back(ROIsNum_fp);
    x_list.push_back(*ROIs);
    auto axis = 1;
    // output of concate
    Tensor ROIs_N5(ROIs->type());
    ROIs_N5.Resize(framework::make_ddim({ROIs->dims()[0], 5}));
    ROIs_N5.mutable_data<T>(ctx.GetPlace());

    // attribute of concate
    auto EleNum = 2;
    framework::NPUAttributeMap attr_concat = {{"N", EleNum},
                                              {"concat_dim", axis}};

    NpuOpRunner runner0;
    runner0.SetType("ConcatD")
        .AddInputs(x_list)
        .AddOutput(ROIs_N5)
        .AddInputNames({"x0", "x1"})
        .AddAttrs(attr_concat);
    runner0.Run(stream);

    const auto& runner =
        NpuOpRunner("ROIAlign", {*X, ROIs_N5}, {*Out}, attr_roi);
    runner.Run(stream);
  }
};

Z
zhulei 已提交
93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180
template <typename T>
class ROIAlignNPUGradKernel : public framework::OpKernel<T> {
 public:
  void Compute(const framework::ExecutionContext& ctx) const override {
    auto* in = ctx.Input<framework::Tensor>("X");
    auto* rois = ctx.Input<framework::LoDTensor>("ROIs");
    auto* out_grad =
        ctx.Input<framework::Tensor>(framework::GradVarName("Out"));
    auto* in_grad = ctx.Output<framework::Tensor>(framework::GradVarName("X"));

    auto pooled_height = ctx.Attr<int>("pooled_height");
    auto pooled_width = ctx.Attr<int>("pooled_width");
    auto spatial_scale = ctx.Attr<float>("spatial_scale");
    auto sample_num = ctx.Attr<int>("sampling_ratio");
    auto in_dims = in->dims();
    auto aligned = ctx.Attr<bool>("aligned");

    int rois_num = rois->dims()[0];

    auto place = ctx.GetPlace();
    auto stream =
        ctx.template device_context<paddle::platform::NPUDeviceContext>()
            .stream();

    if (!in_grad) {
      return;
    }
    in_grad->mutable_data<T>(place);

    PADDLE_ENFORCE_EQ(
        aligned, false,
        platform::errors::InvalidArgument(
            "ROIAlignGradNPU only support Aligned attribute equaled to False"));
    PADDLE_ENFORCE_EQ(
        ctx.HasInput("RoisNum"), true,
        platform::errors::NotFound("Input(RoisNum) of ROIAlignGradOp "
                                   "is not found while using NPU."));
    PADDLE_ENFORCE_EQ(
        rois->type(), framework::proto::VarType::FP32,
        platform::errors::InvalidArgument(
            "ROIAlignGradNPU only support ROIs type equaled to FP32."));

    // Cast RoisNum to fp32 tensor
    auto* RoisNum = ctx.Input<framework::Tensor>("RoisNum");
    Tensor ROIs_N5;
    ROIs_N5.mutable_data<float>({rois_num, 5}, place);
    Tensor ROIsNum_fp;
    ROIsNum_fp.mutable_data<T>(RoisNum->dims(), place);  // shape = [rois_num]
    int nputype_fp32 =
        static_cast<int>(ConvertToNpuDtype(framework::proto::VarType::FP32));
    const auto& runner_cast = NpuOpRunner("Cast", {*RoisNum}, {ROIsNum_fp},
                                          {{"dst_type", nputype_fp32}});
    runner_cast.Run(stream);
    ROIsNum_fp.Resize({rois_num, 1});

    // Combine *ROIsNum with ROIs to get new ROIs
    std::vector<paddle::framework::Tensor> x_list;
    x_list.push_back(ROIsNum_fp);
    x_list.push_back(*rois);
    const auto& runner_concat = NpuOpRunner("ConcatD", {x_list}, {ROIs_N5},
                                            {{"N", 2}, {"concat_dim", 1}});
    runner_concat.Run(stream);

    //  By analysis, in order to match cpu grad version,
    //  rois[:,3:5] should substrate 1 before call ascend grad function
    std::vector<float> vec_dlt = {0, 0, 0, -1.0f, -1.0f};
    Tensor tsr_dlt;
    tsr_dlt.mutable_data<float>({5}, place);
    framework::TensorFromVector<float>(vec_dlt, ctx.device_context(), &tsr_dlt);
    ctx.template device_context<paddle::platform::NPUDeviceContext>().Wait();
    const auto& runner_add =
        NpuOpRunner("AddV2", {ROIs_N5, tsr_dlt}, {ROIs_N5}, {});
    runner_add.Run(stream);

    //  Call ascend RoiAlignGrad function
    int roi_end_mode = 0;
    const auto& runner_roi_align_grad =
        NpuOpRunner("ROIAlignGrad", {*out_grad, ROIs_N5}, {*in_grad},
                    {{"xdiff_shape", framework::vectorize<int>(in_dims)},
                     {"pooled_width", pooled_width},
                     {"pooled_height", pooled_height},
                     {"spatial_scale", spatial_scale},
                     {"sample_num", sample_num},
                     {"roi_end_mode", roi_end_mode}});
    runner_roi_align_grad.Run(stream);
  }
};

S
shiyutang 已提交
181 182 183 184 185 186 187 188 189
}  // namespace operators
}  // namespace paddle

namespace ops = paddle::operators;
REGISTER_OP_NPU_KERNEL(
    roi_align,
    ops::ROIAlignNPUKernel<paddle::platform::NPUDeviceContext, float>,
    ops::ROIAlignNPUKernel<paddle::platform::NPUDeviceContext, double>,
    ops::ROIAlignNPUKernel<paddle::platform::NPUDeviceContext, int>);
Z
zhulei 已提交
190 191 192 193

REGISTER_OP_NPU_KERNEL(roi_align_grad, ops::ROIAlignNPUGradKernel<float>,
                       ops::ROIAlignNPUGradKernel<double>,
                       ops::ROIAlignNPUGradKernel<int>);