huber_loss_op_npu.cc 4.6 KB
Newer Older
Z
zhulei 已提交
1
/* Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved.
2

Z
zhulei 已提交
3 4 5
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
6

Z
zhulei 已提交
7
    http://www.apache.org/licenses/LICENSE-2.0
8

Z
zhulei 已提交
9 10 11 12
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
13
limitations under the License. */
Z
zhulei 已提交
14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131

#include "paddle/fluid/operators/huber_loss_op.h"
#include "paddle/fluid/operators/npu_op_runner.h"

namespace paddle {
namespace operators {

using Tensor = framework::Tensor;

template <typename T>
void HuberLossSub(const platform::Place& place, const aclrtStream& stream,
                  const Tensor* x, const Tensor* y, Tensor* z) {
  //  Calculate z = x - y
  z->mutable_data<T>(x->dims(), place);
  const auto& runner = NpuOpRunner("Sub", {*x, *y}, {*z}, {});
  runner.Run(stream);
}

template <typename T>
void HuberLossMuls(const platform::Place& place, const aclrtStream& stream,
                   const Tensor* x, float scalar, Tensor* y) {
  //  Calculate y = x + scale
  y->mutable_data<T>(x->dims(), place);
  const auto& runner = NpuOpRunner("Muls", {*x}, {*y}, {{"value", scalar}});
  runner.Run(stream);
}

template <typename T>
void HuberLossZerosLike(const platform::Place& place, const aclrtStream& stream,
                        const Tensor* x, Tensor* y) {
  y->mutable_data<T>(x->dims(), place);
  const auto& runner = NpuOpRunner("ZerosLike", {*x}, {*y}, {});
  runner.Run(stream);
}

template <typename T>
void HuberLossSmoothL1Loss(const platform::Place& place,
                           const aclrtStream& stream, const Tensor* x,
                           const Tensor* y, float delta, Tensor* z) {
  z->mutable_data<T>(x->dims(), place);
  const auto& runner =
      NpuOpRunner("SmoothL1Loss", {*x, *y}, {*z}, {{"sigma", delta}});
  runner.Run(stream);
}

template <typename T>
void HuberLossSmoothL1LossGrad(const platform::Place& place,
                               const aclrtStream& stream, const Tensor* pred,
                               const Tensor* lab, const Tensor* dout,
                               float sigma, Tensor* grad) {
  grad->mutable_data<T>(pred->dims(), place);
  const auto& runner = NpuOpRunner("SmoothL1LossGrad", {*pred, *lab, *dout},
                                   {*grad}, {{"sigma", sigma}});
  runner.Run(stream);
}

template <typename T>
class HuberLossNPUKernel : public framework::OpKernel<T> {
 public:
  void Compute(const framework::ExecutionContext& ctx) const override {
    auto* in0 = ctx.Input<Tensor>("X");
    auto* in1 = ctx.Input<Tensor>("Y");
    auto* residual = ctx.Output<Tensor>("Residual");
    auto* out = ctx.Output<Tensor>("Out");
    auto delta = ctx.Attr<float>("delta");

    auto stream =
        ctx.template device_context<paddle::platform::NPUDeviceContext>()
            .stream();
    auto place = ctx.GetPlace();
    HuberLossSub<T>(place, stream, in1, in0, residual);

    HuberLossSmoothL1Loss<T>(place, stream, in0, in1, delta, out);
    HuberLossMuls<T>(place, stream, out, delta, out);
  }
};

template <typename T>
class HuberLossGradNPUKernel : public framework::OpKernel<T> {
 public:
  void Compute(const framework::ExecutionContext& ctx) const override {
    auto* residual = ctx.Input<Tensor>("Residual");
    auto* dout = ctx.Input<Tensor>(framework::GradVarName("Out"));
    auto* dx = ctx.Output<Tensor>(framework::GradVarName("X"));
    auto* dy = ctx.Output<Tensor>(framework::GradVarName("Y"));
    auto delta = ctx.Attr<float>("delta");

    auto stream =
        ctx.template device_context<paddle::platform::NPUDeviceContext>()
            .stream();
    auto place = ctx.GetPlace();

    Tensor t_grad_rd;
    if (dx || dy) {
      Tensor t_zero;
      HuberLossZerosLike<T>(place, stream, residual, &t_zero);
      HuberLossSmoothL1LossGrad<T>(place, stream, residual, &t_zero, dout,
                                   delta, &t_grad_rd);
    }
    if (dx) {
      HuberLossMuls<T>(place, stream, &t_grad_rd, -delta, dx);
    }
    if (dy) {
      HuberLossMuls<T>(place, stream, &t_grad_rd, delta, dy);
    }
  }
};

}  // namespace operators
}  // namespace paddle

namespace ops = paddle::operators;
namespace plat = paddle::platform;

REGISTER_OP_NPU_KERNEL(huber_loss, ops::HuberLossNPUKernel<float>,
                       ops::HuberLossNPUKernel<plat::float16>);
REGISTER_OP_NPU_KERNEL(huber_loss_grad, ops::HuberLossGradNPUKernel<float>,
                       ops::HuberLossGradNPUKernel<plat::float16>);