distribute_fpn_proposals_kernel.cc 5.6 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145
// Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
//     http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.

#include "paddle/phi/kernels/distribute_fpn_proposals_kernel.h"

#include "paddle/phi/backends/cpu/cpu_context.h"
#include "paddle/phi/core/kernel_registry.h"
#include "paddle/phi/kernels/funcs/distribute_fpn_proposals_functor.h"

namespace phi {

template <typename T, typename Context>
void DistributeFpnProposalsKernel(
    const Context& dev_ctx,
    const DenseTensor& fpn_rois,
    const paddle::optional<DenseTensor>& rois_num,
    int min_level,
    int max_level,
    int refer_level,
    int refer_scale,
    bool pixel_offset,
    std::vector<DenseTensor*> multi_fpn_rois,
    std::vector<DenseTensor*> multi_level_rois_num,
    DenseTensor* restore_index) {
  const int num_level = max_level - min_level + 1;

  // check that the fpn_rois is not empty
  if (!rois_num.get_ptr()) {
    PADDLE_ENFORCE_EQ(
        fpn_rois.lod().size(),
        1UL,
        errors::InvalidArgument("DistributeFpnProposalsOp needs LoD "
                                "with one level. But received level is %d",
                                fpn_rois.lod().size()));
  }

  std::vector<size_t> fpn_rois_lod;
  int fpn_rois_num;
  if (rois_num.get_ptr()) {
    fpn_rois_lod = funcs::GetLodFromRoisNum(dev_ctx, rois_num.get_ptr());
  } else {
    fpn_rois_lod = fpn_rois.lod().back();
  }
  fpn_rois_num = fpn_rois_lod[fpn_rois_lod.size() - 1];
  std::vector<int> target_level;

  // record the number of rois in each level
  std::vector<int> num_rois_level(num_level, 0);
  std::vector<int> num_rois_level_integral(num_level + 1, 0);
  for (size_t i = 0; i < fpn_rois_lod.size() - 1; ++i) {
    auto fpn_rois_slice = fpn_rois.Slice(fpn_rois_lod[i], fpn_rois_lod[i + 1]);
    const T* rois_data = fpn_rois_slice.data<T>();
    for (int j = 0; j < fpn_rois_slice.dims()[0]; ++j) {
      // get the target level of current rois
      T roi_scale = std::sqrt(funcs::BBoxArea(rois_data, pixel_offset));
      int tgt_lvl = std::floor(std::log2(roi_scale / refer_scale + (T)1e-6) +
                               refer_level);
      tgt_lvl = std::min(max_level, std::max(tgt_lvl, min_level));
      target_level.push_back(tgt_lvl);
      num_rois_level[tgt_lvl - min_level]++;
      rois_data += funcs::kBoxDim;
    }
  }
  // define the output rois
  // pointer which point to each level fpn rois
  std::vector<T*> multi_fpn_rois_data(num_level);
  // lod0 which will record the offset information of each level rois
  std::vector<std::vector<size_t>> multi_fpn_rois_lod0;
  for (int i = 0; i < num_level; ++i) {
    // allocate memory for each level rois
    multi_fpn_rois[i]->Resize({num_rois_level[i], funcs::kBoxDim});
    multi_fpn_rois_data[i] = dev_ctx.template Alloc<T>(multi_fpn_rois[i]);
    std::vector<size_t> lod0(1, 0);
    multi_fpn_rois_lod0.push_back(lod0);
    // statistic start point for each level rois
    num_rois_level_integral[i + 1] =
        num_rois_level_integral[i] + num_rois_level[i];
  }
  restore_index->Resize({fpn_rois_num, 1});
  int* restore_index_data = dev_ctx.template Alloc<int>(restore_index);
  std::vector<int> restore_index_inter(fpn_rois_num, -1);
  // distribute the rois into different fpn level by target level
  for (size_t i = 0; i < fpn_rois_lod.size() - 1; ++i) {
    auto fpn_rois_slice = fpn_rois.Slice(fpn_rois_lod[i], fpn_rois_lod[i + 1]);
    const T* rois_data = fpn_rois_slice.data<T>();
    size_t cur_offset = fpn_rois_lod[i];

    for (int j = 0; j < num_level; j++) {
      multi_fpn_rois_lod0[j].push_back(multi_fpn_rois_lod0[j][i]);
    }
    for (int j = 0; j < fpn_rois_slice.dims()[0]; ++j) {
      int lvl = target_level[cur_offset + j];
      memcpy(multi_fpn_rois_data[lvl - min_level],
             rois_data,
             funcs::kBoxDim * sizeof(T));
      multi_fpn_rois_data[lvl - min_level] += funcs::kBoxDim;
      int index_in_shuffle = num_rois_level_integral[lvl - min_level] +
                             multi_fpn_rois_lod0[lvl - min_level][i + 1];
      restore_index_inter[index_in_shuffle] = cur_offset + j;
      multi_fpn_rois_lod0[lvl - min_level][i + 1]++;
      rois_data += funcs::kBoxDim;
    }
  }
  for (int i = 0; i < fpn_rois_num; ++i) {
    restore_index_data[restore_index_inter[i]] = i;
  }

  if (multi_level_rois_num.size() > 0) {
    int batch_size = fpn_rois_lod.size() - 1;
    for (int i = 0; i < num_level; ++i) {
      multi_level_rois_num[i]->Resize({batch_size});
      int* rois_num_data = dev_ctx.template Alloc<int>(multi_level_rois_num[i]);
      for (int j = 0; j < batch_size; ++j) {
        rois_num_data[j] = static_cast<int>(multi_fpn_rois_lod0[i][j + 1] -
                                            multi_fpn_rois_lod0[i][j]);
      }
    }
  }
  // merge lod information into LoDTensor
  for (int i = 0; i < num_level; ++i) {
    LoD lod;
    lod.emplace_back(multi_fpn_rois_lod0[i]);
    multi_fpn_rois[i]->set_lod(lod);
  }
}

}  // namespace phi

PD_REGISTER_KERNEL(distribute_fpn_proposals,
                   CPU,
                   ALL_LAYOUT,
                   phi::DistributeFpnProposalsKernel,
                   float,
                   double) {}