softmax_with_cross_entropy_op.cc 4.1 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserve.

   Licensed under the Apache License, Version 2.0 (the "License");
   you may not use this file except in compliance with the License.
   You may obtain a copy of the License at

   http://www.apache.org/licenses/LICENSE-2.0

   Unless required by applicable law or agreed to in writing, software
   distributed under the License is distributed on an "AS IS" BASIS,
   WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
   See the License for the specific language governing permissions and
   limitations under the License. */

#include "paddle/operators/softmax_with_cross_entropy_op.h"

namespace paddle {
namespace operators {

class SoftmaxWithCrossEntropyOpMaker
    : public framework::OpProtoAndCheckerMaker {
 public:
23 24
  SoftmaxWithCrossEntropyOpMaker(framework::OpProto* proto,
                                 framework::OpAttrChecker* op_checker)
25
      : OpProtoAndCheckerMaker(proto, op_checker) {
C
caoying03 已提交
26
    AddInput("Logits",
27
             "The unscaled log probabilities which is a 2-D tensor<float> with"
28 29
             "shape [N x K]. N is the batch_size, and K is the class number.")
        .NotInGradient();
C
caoying03 已提交
30 31 32 33 34
    AddInput("Label", "The ground truth. A 1-D tensor<int> with shape N.");
    AddOutput("Softmax",
              "Store the outputs of softmax function, "
              "which will be used in backward calculation.")
        .AsIntermediate();
C
caoying03 已提交
35
    AddOutput("Out", "A 1-D tensor<float> with shape N.");
36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57
    AddComment(R"DOC(
Cross entropy loss with softmax are used as the output layer extensively. This
operator computes the softmax normalized values for each row of the input
tensor, after which cross-entropy loss is then computed. This provides a more
numerically stable gradient.

Because this operators performs a softmax on logits internally, it expects
unscaled logits. Please do not call this op with the output of softmax operator,
which will produce incorrect results.

This operators expects mutually exclusive hard labels, each sample in a batch
is in exactly one class with probabilities 1. Each sample in the batch with one
and only one label.
)DOC");
  }
};

class SoftmaxWithCrossEntropyOpGrad : public framework::OperatorWithKernel {
 public:
  using framework::OperatorWithKernel::OperatorWithKernel;

 protected:
58
  void InferShape(const framework::InferShapeContext& ctx) const override {
C
caoying03 已提交
59 60
    PADDLE_ENFORCE_NOT_NULL(ctx.InputVar(framework::GradVarName("Out")),
                            "Input(Out@Grad) should not be null");
61 62
    PADDLE_ENFORCE_NOT_NULL(ctx.InputVar("Softmax"),
                            "Input(Softmax) should be not null.");
C
caoying03 已提交
63 64
    PADDLE_ENFORCE_NOT_NULL(ctx.InputVar("Label"),
                            "Input(Lable) should be not null.");
65

C
caoying03 已提交
66
    ctx.Output<framework::LoDTensor>(framework::GradVarName("Logits"))
67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83
        ->Resize(ctx.Input<Tensor>("Softmax")->dims());
  }
};

class SoftmaxWithCrossEntropyOp : public framework::OperatorWithKernel {
 public:
  using framework::OperatorWithKernel::OperatorWithKernel;

 protected:
  void InferShape(const framework::InferShapeContext& ctx) const override {
    const Tensor* logits = ctx.Input<Tensor>("Logits");
    PADDLE_ENFORCE(
        logits->dims().size() == 2UL,
        "The input of softmax_with_cross_entropy should be a 2-d tensor.");
    PADDLE_ENFORCE(ctx.Input<Tensor>("Label")->dims().size() == 1UL,
                   "The label should be a 1-d tensor.");

C
caoying03 已提交
84 85
    ctx.Output<framework::LoDTensor>("Softmax")->Resize(logits->dims());
    ctx.Output<framework::LoDTensor>("Out")->Resize({logits->dims()[0], 1});
86 87 88 89 90 91 92 93 94 95 96 97
  }
};

}  // namespace operators
}  // namespace paddle

namespace ops = paddle::operators;

REGISTER_OP(softmax_with_cross_entropy, ops::SoftmaxWithCrossEntropyOp,
            ops::SoftmaxWithCrossEntropyOpMaker,
            softmax_with_cross_entropy_grad,
            ops::SoftmaxWithCrossEntropyOpGrad);
98 99 100 101
REGISTER_OP_CPU_KERNEL(softmax_with_cross_entropy,
                       ops::SoftmaxWithCrossEntropyKernel<float>);
REGISTER_OP_CPU_KERNEL(softmax_with_cross_entropy_grad,
                       ops::SoftmaxWithCrossEntropyGradKernel<float>);