elementwise_add_op.cu 6.0 KB
Newer Older
1
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserved.
G
gongweibao 已提交
2

L
Luo Tao 已提交
3 4 5
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
G
gongweibao 已提交
6

L
Luo Tao 已提交
7
    http://www.apache.org/licenses/LICENSE-2.0
G
gongweibao 已提交
8

L
Luo Tao 已提交
9 10 11 12 13
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
W
Wu Yi 已提交
14
#include "paddle/fluid/operators/elementwise/elementwise_add_op.h"
15
#include "paddle/fluid/operators/elementwise/elementwise_op_function.cu.h"
16 17
#include "paddle/fluid/platform/complex128.h"
#include "paddle/fluid/platform/complex64.h"
K
Kexin Zhao 已提交
18
#include "paddle/fluid/platform/float16.h"
G
gongweibao 已提交
19 20

namespace ops = paddle::operators;
K
Kexin Zhao 已提交
21
namespace plat = paddle::platform;
G
gongweibao 已提交
22

23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44
namespace paddle {
namespace operators {

template <typename T>
struct SameDimsElemwiseAdd<platform::CUDADeviceContext, T> {
  void operator()(const framework::ExecutionContext& ctx,
                  const framework::Tensor* x, const framework::Tensor* y,
                  framework::Tensor* z) {
    AddRangeFunctor<T> functor(x->data<T>(), y->data<T>(), z->data<T>());
    auto& dev_ctx = ctx.template device_context<platform::CUDADeviceContext>();
    platform::ForRange<platform::CUDADeviceContext> for_range(dev_ctx,
                                                              x->numel());
    for_range(functor);
  }
};

template <>
struct SameDimsElemwiseAdd<platform::CUDADeviceContext, platform::float16> {
  void operator()(const framework::ExecutionContext& ctx,
                  const framework::Tensor* x, const framework::Tensor* y,
                  framework::Tensor* z) {
    auto size = x->numel();
45 46 47
    dim3 grid_size = dim3(((size + 1) / 2 + PADDLE_CUDA_THREAD_SIZE - 1) /
                              PADDLE_CUDA_THREAD_SIZE,
                          1);
48 49 50 51 52 53 54
    dim3 block_size = dim3(PADDLE_CUDA_THREAD_SIZE, 1);
    const half* x2 =
        reinterpret_cast<const half*>(x->data<platform::float16>());
    const half* y2 =
        reinterpret_cast<const half*>(y->data<platform::float16>());
    half* z2 = reinterpret_cast<half*>(z->data<platform::float16>());
    SameDimsElemwiseAddCUDAKernel<<<
55
        grid_size, block_size, 0,
56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83
        ctx.template device_context<platform::CUDADeviceContext>().stream()>>>(
        x2, y2, z2, size);
  }
};

template <typename T>
static __global__ void SimpleElemwiseAddGradCUDAKernel(const T* dout,
                                                       int64_t size, T* dx,
                                                       T* dy) {
  int col = blockIdx.x * blockDim.x + threadIdx.x;

  while (col < size) {
    dx[col] = dout[col];
    dy[col] = dout[col];
    col += blockDim.x * gridDim.x;
  }
}

template <typename DeviceContext, typename T>
typename std::enable_if<
    std::is_same<DeviceContext, plat::CUDADeviceContext>::value>::type
elementwise_add_grad(const framework::ExecutionContext& ctx,
                     const framework::Tensor* x, const framework::Tensor* y,
                     const framework::Tensor* out,
                     const framework::Tensor* dout, framework::Tensor* dx,
                     framework::Tensor* dy) {
  dim3 block_size = dim3(PADDLE_CUDA_THREAD_SIZE, 1);
  auto size = x->numel();
84
  dim3 grid_size =
85 86
      dim3((size + PADDLE_CUDA_THREAD_SIZE - 1) / PADDLE_CUDA_THREAD_SIZE, 1);
  SimpleElemwiseAddGradCUDAKernel<
87
      T><<<grid_size, block_size, 0,
88 89 90 91 92 93 94
           ctx.template device_context<plat::CUDADeviceContext>().stream()>>>(
      dout->data<T>(), size, dx->mutable_data<T>(ctx.GetPlace()),
      dy->mutable_data<T>(ctx.GetPlace()));
}

}  // namespace operators
}  // namespace paddle
Q
QI JUN 已提交
95
REGISTER_OP_CUDA_KERNEL(
K
Kexin Zhao 已提交
96 97 98
    elementwise_add, ops::ElementwiseAddKernel<plat::CUDADeviceContext, float>,
    ops::ElementwiseAddKernel<plat::CUDADeviceContext, double>,
    ops::ElementwiseAddKernel<plat::CUDADeviceContext, int>,
K
Kexin Zhao 已提交
99
    ops::ElementwiseAddKernel<plat::CUDADeviceContext, int64_t>,
100 101 102
    ops::ElementwiseAddKernel<plat::CUDADeviceContext, plat::float16>,
    ops::ElementwiseAddKernel<plat::CUDADeviceContext, plat::complex64>,
    ops::ElementwiseAddKernel<plat::CUDADeviceContext, plat::complex128>);
Q
QI JUN 已提交
103
REGISTER_OP_CUDA_KERNEL(
G
gongweibao 已提交
104
    elementwise_add_grad,
K
Kexin Zhao 已提交
105 106 107
    ops::ElementwiseAddGradKernel<plat::CUDADeviceContext, float>,
    ops::ElementwiseAddGradKernel<plat::CUDADeviceContext, double>,
    ops::ElementwiseAddGradKernel<plat::CUDADeviceContext, int>,
C
chengduo 已提交
108
    ops::ElementwiseAddGradKernel<plat::CUDADeviceContext, int64_t>,
109 110 111
    ops::ElementwiseAddGradKernel<plat::CUDADeviceContext, plat::float16>,
    ops::ElementwiseAddGradKernel<plat::CUDADeviceContext, plat::complex64>,
    ops::ElementwiseAddGradKernel<plat::CUDADeviceContext, plat::complex128>);
112 113 114 115 116
REGISTER_OP_CUDA_KERNEL(
    elementwise_add_grad_grad,
    ops::ElementwiseAddDoubleGradKernel<plat::CUDADeviceContext, float>,
    ops::ElementwiseAddDoubleGradKernel<plat::CUDADeviceContext, double>,
    ops::ElementwiseAddDoubleGradKernel<plat::CUDADeviceContext, int>,
117
    ops::ElementwiseAddDoubleGradKernel<plat::CUDADeviceContext, int64_t>,
118
    ops::ElementwiseAddDoubleGradKernel<plat::CUDADeviceContext, plat::float16>,
119
    ops::ElementwiseAddDoubleGradKernel<plat::CUDADeviceContext,
120 121 122
                                        plat::complex64>,
    ops::ElementwiseAddDoubleGradKernel<plat::CUDADeviceContext,
                                        plat::complex128>);
123 124 125 126 127 128

REGISTER_OP_CUDA_KERNEL(
    grad_add, ops::ElementwiseAddKernel<plat::CUDADeviceContext, float>,
    ops::ElementwiseAddKernel<plat::CUDADeviceContext, double>,
    ops::ElementwiseAddKernel<plat::CUDADeviceContext, int>,
    ops::ElementwiseAddKernel<plat::CUDADeviceContext, int64_t>,
129 130 131
    ops::ElementwiseAddKernel<plat::CUDADeviceContext, plat::float16>,
    ops::ElementwiseAddKernel<plat::CUDADeviceContext, plat::complex64>,
    ops::ElementwiseAddKernel<plat::CUDADeviceContext, plat::complex128>);