selected_rows_functor.h 9.5 KB
Newer Older
1
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserved.
2 3 4 5 6 7 8 9 10 11 12 13 14

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

    http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
#pragma once
M
minqiyang 已提交
15 16 17

#include <vector>

Y
Yi Wang 已提交
18 19
#include "paddle/fluid/framework/eigen.h"
#include "paddle/fluid/framework/selected_rows.h"
M
minqiyang 已提交
20 21
#include "paddle/fluid/operators/math/blas.h"
#include "paddle/fluid/operators/math/math_function.h"
Y
Yi Wang 已提交
22
#include "paddle/fluid/platform/device_context.h"
23

T
wip  
typhoonzero 已提交
24 25 26 27
#define INLINE_FOR2(sizei, sizej)     \
  for (int64_t i = 0; i < sizei; i++) \
    for (int64_t j = 0; j < sizej; j++)

28 29 30 31 32 33
namespace paddle {
namespace operators {
namespace math {

// SelectedRows + SelectedRows will simplely concat value and rows.
// The real computation happens in dealing with LoDTensor.
Q
QI JUN 已提交
34
template <typename DeviceContext, typename T>
35
struct SelectedRowsAdd {
Q
QI JUN 已提交
36
  void operator()(const DeviceContext& context,
37 38 39 40 41
                  const framework::SelectedRows& input1,
                  const framework::SelectedRows& input2,
                  framework::SelectedRows* output);
};

Q
QI JUN 已提交
42
template <typename DeviceContext, typename T>
43
struct SelectedRowsAddTensor {
Q
QI JUN 已提交
44
  void operator()(const DeviceContext& context,
45 46 47 48
                  const framework::SelectedRows& input1,
                  const framework::Tensor& input2, framework::Tensor* output);
};

Q
QI JUN 已提交
49
// input2 = input1 + input2
Q
QI JUN 已提交
50
template <typename DeviceContext, typename T>
Q
QI JUN 已提交
51
struct SelectedRowsAddTo {
Q
QI JUN 已提交
52
  void operator()(const DeviceContext& context,
Q
QI JUN 已提交
53 54 55 56
                  const framework::SelectedRows& input1,
                  const int64_t input2_offset, framework::SelectedRows* input2);
};

M
minqiyang 已提交
57 58 59 60 61 62 63 64 65
// input2 = [all input in input1] + input2
template <typename DeviceContext, typename T>
struct SelectedRowsSumTo {
  void operator()(const DeviceContext& context,
                  const std::vector<framework::SelectedRows*>& input1,
                  const std::vector<int64_t>& input2_offsets,
                  framework::SelectedRows* input2);
};

Q
QI JUN 已提交
66
// input2 = input1 + input2
Q
QI JUN 已提交
67
template <typename DeviceContext, typename T>
Q
QI JUN 已提交
68
struct SelectedRowsAddToTensor {
Q
QI JUN 已提交
69
  void operator()(const DeviceContext& context,
Q
QI JUN 已提交
70 71 72 73
                  const framework::SelectedRows& input1,
                  framework::Tensor* input2);
};

T
typhoonzero 已提交
74 75 76 77 78 79
namespace scatter {
// functors for manuplating SelectedRows data
template <typename DeviceContext, typename T>
struct MergeAdd {
  // unary functor, merge by adding duplicated rows in
  // the input SelectedRows object.
T
wip  
typhoonzero 已提交
80 81
  framework::SelectedRows operator()(const DeviceContext& context,
                                     const framework::SelectedRows& input);
S
sneaxiy 已提交
82 83 84
  void operator()(const DeviceContext& context,
                  const framework::SelectedRows& input,
                  framework::SelectedRows* output);
T
typhoonzero 已提交
85 86
};

M
minqiyang 已提交
87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188
template <>
struct MergeAdd<platform::CPUDeviceContext, float> {
  framework::SelectedRows operator()(const platform::CPUDeviceContext& context,
                                     const framework::SelectedRows& input) {
    framework::SelectedRows out;
    (*this)(context, input, &out);
    return out;
  }

  void operator()(const platform::CPUDeviceContext& context,
                  const framework::SelectedRows& input,
                  framework::SelectedRows* output) {
    framework::SelectedRows& out = *output;
    auto input_rows = input.rows();
    std::vector<int64_t> merge_rows;
    merge_rows.reserve(input_rows.size());
    std::unordered_map<int64_t, size_t> rows_pos_map;
    rows_pos_map.reserve(input_rows.size());
    size_t idx = 0u;
    for (std::vector<int64_t>::iterator iter = input_rows.begin();
         iter != input_rows.end(); ++iter) {
      if (rows_pos_map.find(*iter) == rows_pos_map.end()) {
        rows_pos_map[*iter] = idx++;
        merge_rows.emplace_back(*iter);
      }
    }

    auto input_width = input.value().dims()[1];
    out.set_rows(merge_rows);
    out.set_height(input.height());
    out.mutable_value()->mutable_data<float>(
        framework::make_ddim(
            {static_cast<int64_t>(merge_rows.size()), input_width}),
        context.GetPlace());

    math::SetConstant<platform::CPUDeviceContext, float> constant_functor;
    constant_functor(context, out.mutable_value(), 0.0);

    auto* out_data = out.mutable_value()->data<float>();
    auto* input_data = input.value().data<float>();

    auto blas = GetBlas<platform::CPUDeviceContext, float>(context);
    for (size_t i = 0; i < input_rows.size(); i++) {
      size_t out_i = rows_pos_map[input_rows[i]];
      float* y = out_data + out_i * input_width;
      const float* x = input_data + i * input_width;
      blas.AXPY(input_width, 1., x, y);
    }
  }
};

template <>
struct MergeAdd<platform::CPUDeviceContext, double> {
  framework::SelectedRows operator()(const platform::CPUDeviceContext& context,
                                     const framework::SelectedRows& input) {
    framework::SelectedRows out;
    (*this)(context, input, &out);
    return out;
  }

  void operator()(const platform::CPUDeviceContext& context,
                  const framework::SelectedRows& input,
                  framework::SelectedRows* output) {
    framework::SelectedRows& out = *output;
    auto input_rows = input.rows();
    std::vector<int64_t> merge_rows;
    merge_rows.reserve(input_rows.size());
    std::unordered_map<int64_t, size_t> rows_pos_map;
    rows_pos_map.reserve(input_rows.size());
    size_t idx = 0u;
    for (std::vector<int64_t>::iterator iter = input_rows.begin();
         iter != input_rows.end(); ++iter) {
      if (rows_pos_map.find(*iter) == rows_pos_map.end()) {
        rows_pos_map[*iter] = idx++;
        merge_rows.emplace_back(*iter);
      }
    }

    auto input_width = input.value().dims()[1];
    out.set_rows(merge_rows);
    out.set_height(input.height());
    out.mutable_value()->mutable_data<double>(
        framework::make_ddim(
            {static_cast<int64_t>(merge_rows.size()), input_width}),
        context.GetPlace());

    math::SetConstant<platform::CPUDeviceContext, double> constant_functor;
    constant_functor(context, out.mutable_value(), 0.0);

    auto* out_data = out.mutable_value()->data<double>();
    auto* input_data = input.value().data<double>();

    auto blas = GetBlas<platform::CPUDeviceContext, double>(context);
    for (size_t i = 0; i < input_rows.size(); i++) {
      size_t out_i = rows_pos_map[input_rows[i]];
      double* y = out_data + out_i * input_width;
      const double* x = input_data + i * input_width;
      blas.AXPY(input_width, 1., x, y);
    }
  }
};

T
typhoonzero 已提交
189 190
template <typename DeviceContext, typename T>
struct Add {
T
wip  
typhoonzero 已提交
191 192 193 194 195 196 197 198 199
  framework::SelectedRows operator()(const DeviceContext& context,
                                     const framework::SelectedRows& input1,
                                     const framework::SelectedRows& input2) {
    framework::SelectedRows out;
    out.set_rows(input1.rows());
    out.set_height(input1.height());
    out.mutable_value()->mutable_data<T>(input1.value().dims(),
                                         context.GetPlace());
    auto e_out = framework::EigenVector<T>::Flatten(*(out.mutable_value()));
T
wip  
typhoonzero 已提交
200 201
    auto e_in1 = framework::EigenVector<T>::Flatten(input1.value());
    auto e_in2 = framework::EigenVector<T>::Flatten(input2.value());
T
typhoonzero 已提交
202
    e_out.device(*context.eigen_device()) = e_in1 + e_in2;
T
wip  
typhoonzero 已提交
203
    return out;
T
typhoonzero 已提交
204 205 206 207 208
  }
};

template <typename DeviceContext, typename T>
struct Mul {
T
wip  
typhoonzero 已提交
209 210 211 212 213 214 215 216 217 218
  // multiply two SelectedRows
  framework::SelectedRows operator()(const DeviceContext& context,
                                     const framework::SelectedRows& input1,
                                     const framework::SelectedRows& input2) {
    framework::SelectedRows out;
    out.set_rows(input1.rows());
    out.set_height(input1.height());
    out.mutable_value()->mutable_data<T>(input1.value().dims(),
                                         context.GetPlace());
    auto e_out = framework::EigenVector<T>::Flatten(*(out.mutable_value()));
T
wip  
typhoonzero 已提交
219 220
    auto e_in1 = framework::EigenVector<T>::Flatten(input1.value());
    auto e_in2 = framework::EigenVector<T>::Flatten(input2.value());
T
typhoonzero 已提交
221
    e_out.device(*context.eigen_device()) = e_in1 * e_in2;
T
wip  
typhoonzero 已提交
222 223 224 225 226 227 228 229 230 231 232 233 234 235 236
    return out;
  }
  // multiply scalar to SelectedRows
  framework::SelectedRows operator()(const DeviceContext& context,
                                     const framework::SelectedRows& input1,
                                     const T input2) {
    framework::SelectedRows out;
    out.set_rows(input1.rows());
    out.set_height(input1.height());
    out.mutable_value()->mutable_data<T>(input1.value().dims(),
                                         context.GetPlace());
    auto e_out = framework::EigenVector<T>::Flatten(*(out.mutable_value()));
    auto e_in1 = framework::EigenVector<T>::Flatten(input1.value());
    e_out.device(*context.eigen_device()) = input2 * e_in1;
    return out;
T
typhoonzero 已提交
237 238 239
  }
};

T
wip  
typhoonzero 已提交
240 241 242 243 244
enum class ScatterOps { ASSIGN, ADD, SUB, SUBBY, MUL, DIV, DIVBY };

// out = seleted_rows_in / tensor
template <typename DeviceContext, typename T>
struct UpdateToTensor {
T
typhoonzero 已提交
245 246 247
  void operator()(const DeviceContext& context, const ScatterOps& op,
                  const framework::SelectedRows& input1,
                  framework::Tensor* input2);
T
wip  
typhoonzero 已提交
248 249
};

T
typhoonzero 已提交
250
}  // namespace scatter
251 252 253
}  // namespace math
}  // namespace operators
}  // namespace paddle