convolution.cu.h 25.9 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25
/* Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

    http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */

#pragma once

#include <thrust/execution_policy.h>
#include <thrust/remove.h>
#include <thrust/sort.h>
#include <thrust/unique.h>

#include "paddle/phi/backends/gpu/gpu_context.h"
#include "paddle/phi/backends/gpu/gpu_info.h"
#include "paddle/phi/backends/gpu/gpu_launch_config.h"
#include "paddle/phi/kernels/funcs/index_impl.cu.h"
Z
zhangkaihuo 已提交
26 27
#include "paddle/phi/kernels/funcs/math_function.h"
#include "paddle/phi/kernels/primitive/compute_primitives.h"
28 29 30 31 32
#include "paddle/phi/kernels/sparse/convolution_kernel.h"

namespace phi {
namespace sparse {

Z
zhangkaihuo 已提交
33 34
using Dims4D = phi::funcs::sparse::Dims4D;

35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77
// TODO(zhangkaihuo): After the GatherCUDAKernel is migrated to phi, replace
// this kernel with phi::GatherCUDAKernel;
// Vectorization can be used to improve read and write bandwidth
/**
 * brief: gather data from params according to indices
 * params: the inputs
 * indices: the indices you want to gather
 * output: the outputs
 * index_size: the size of indices
 * slice_size: slice size corresponding to each index, here is the channel size
**/
template <typename T, typename IndexT = int>
__global__ void GatherKernel(const T* params,
                             const IndexT* indices,
                             T* output,
                             size_t index_size,
                             size_t slice_size) {
  CUDA_KERNEL_LOOP_TYPE(i, index_size * slice_size, int64_t) {
    int64_t indices_i = i / slice_size;
    int64_t slice_i = i - indices_i * slice_size;  // offset inside the slice
    IndexT gather_i = indices[indices_i];
    int64_t params_i = gather_i * slice_size + slice_i;
    *(output + i) = *(params + params_i);
  }
}

/**
 * brief: scatter add
 * input: the inputs
 * unique_value: refer to UpdateIndexKernel notes
 * out_index: the output feature index
 * non_zero_num: the number of output features
 * rulebook_len: the length of rulebook
 * channels: the output channel size
 * out: the outputs
**/
template <typename T>
__global__ void ScatterKernel(const T* input,
                              const int* unique_value,
                              const int* out_index,
                              const int non_zero_num,
                              const int rulebook_len,
                              const int channels,
Z
zhangkaihuo 已提交
78 79
                              T* out,
                              const bool subm = false) {
80 81 82 83 84 85 86 87 88 89
  int tid = threadIdx.x + blockIdx.x * blockDim.x;
  for (int i = tid; i < non_zero_num * channels; i += gridDim.x * blockDim.x) {
    int indices_i = i / channels;
    int channels_i = i - indices_i * channels;

    int start = unique_value[indices_i];
    int end = indices_i == non_zero_num - 1 ? rulebook_len
                                            : unique_value[indices_i + 1];
    // max(end-start) = kernel_size
    T sum = static_cast<T>(0);
Z
zhangkaihuo 已提交
90 91 92
    if (subm) {
      sum = out[indices_i * channels + channels_i];
    }
93 94 95 96 97 98 99 100
    for (int j = start; j < end; j++) {
      const int out_feature_i = out_index[j];
      sum += input[out_feature_i * channels + channels_i];
    }
    out[indices_i * channels + channels_i] = sum;
  }
}

101 102 103 104 105 106 107
template <typename Context, typename IntT = int>
inline IntT* SortedAndUniqueIndex(const Context& dev_ctx,
                                  const IntT* rulebook_ptr,
                                  const int len,
                                  DenseTensor* out_index,
                                  DenseTensor* unique_key,
                                  DenseTensor* unique_value) {
108 109 110 111 112
  phi::IndexKernel<int, kps::IdentityFunctor<int>>(
      dev_ctx, out_index, kps::IdentityFunctor<int>());
  phi::IndexKernel<int, kps::IdentityFunctor<int>>(
      dev_ctx, unique_value, kps::IdentityFunctor<int>());

113
  phi::backends::gpu::GpuMemcpyAsync(unique_key->data<IntT>(),
114
                                     rulebook_ptr,
115
                                     sizeof(IntT) * len,
116 117 118 119 120 121 122 123 124 125 126 127 128
#ifdef PADDLE_WITH_HIP
                                     hipMemcpyDeviceToDevice,
#else
                                     cudaMemcpyDeviceToDevice,
#endif
                                     dev_ctx.stream());
// compared with thrust::sort_by_key, thrust::merge_by_key may achieved higher
// performance, but thrust::merge_by_key limited by data size
#ifdef PADDLE_WITH_HIP
  thrust::sort_by_key(thrust::hip::par.on(dev_ctx.stream()),
#else
  thrust::sort_by_key(thrust::cuda::par.on(dev_ctx.stream()),
#endif
129 130
                      unique_key->data<IntT>(),
                      unique_key->data<IntT>() + len,
131 132 133
                      out_index->data<int>());

  // 4. unique
134
  thrust::pair<IntT*, int*> new_end =
135 136 137 138 139
#ifdef PADDLE_WITH_HIP
      thrust::unique_by_key(thrust::hip::par.on(dev_ctx.stream()),
#else
      thrust::unique_by_key(thrust::cuda::par.on(dev_ctx.stream()),
#endif
140 141
                            unique_key->data<IntT>(),
                            unique_key->data<IntT>() + len,
142 143 144 145
                            unique_value->data<int>());
  return new_end.first;
}

Z
zhangkaihuo 已提交
146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161
template <typename T>
__global__ void SetFlagAndUpdateCounterKernel(const int* indexs,
                                              const int n,
                                              const int rulebook_len,
                                              const int kernel_size,
                                              T* rulebook_ptr,
                                              int* counter_ptr) {
  int tid = threadIdx.x + blockIdx.x * blockDim.x;
  extern __shared__ int cache_count[];  // kernel_size
  for (int i = threadIdx.x; i < kernel_size; i += blockDim.x) {
    cache_count[i] = 0;
  }
  __syncthreads();

  for (int i = tid; i < n; i += gridDim.x * blockDim.x) {
    int index = indexs[i];
162
    T kernel_index = rulebook_ptr[index];
Z
zhangkaihuo 已提交
163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185
    rulebook_ptr[index + rulebook_len] = -1;
    rulebook_ptr[index + 2 * rulebook_len] = -1;
    rulebook_ptr[index] = -1;
    atomicAdd(&cache_count[kernel_index], 1);
  }
  __syncthreads();

  for (int i = threadIdx.x; i < kernel_size; i += blockDim.x) {
    atomicSub(&counter_ptr[i], cache_count[i]);
  }
}

/**
 * @brief: update the out index and indices
 * unique_keys: save the index of the output feature list
 * unique_values: indiates the index of key before deduplication
 * out_indexs: indicates the position of the output index in the rulebook
 * rulebook_len: indicates the length of rulebook
 * out_dims: indicates the output dims
 * out_indices: the indices of output, out_indices = IndexToPoint(unique_keys)
 * rulebook_out_indexs: the output index in rulebook
**/
template <typename T>
186
__global__ void UpdateIndexKernel(const T* unique_keys,
Z
zhangkaihuo 已提交
187 188
                                  const int* unique_values,
                                  const int* out_indexs,
189
                                  const int64_t non_zero_num,
Z
zhangkaihuo 已提交
190 191 192 193 194 195
                                  const int rulebook_len,
                                  const Dims4D out_dims,
                                  T* out_indices,
                                  T* rulebook_out_indexs) {
  int tid = threadIdx.x + blockIdx.x * blockDim.x;
  for (int i = tid; i < non_zero_num; i += gridDim.x * blockDim.x) {
196 197
    const T index = unique_keys[i];
    T batch, x, y, z;
Z
zhangkaihuo 已提交
198 199 200 201 202 203 204 205 206 207 208 209
    phi::funcs::sparse::IndexToPoint<Dims4D>(
        index, out_dims, &batch, &x, &y, &z);
    // get out indices
    out_indices[i] = batch;
    out_indices[i + non_zero_num] = z;
    out_indices[i + non_zero_num * 2] = y;
    out_indices[i + non_zero_num * 3] = x;

    // update rulebook
    int start = unique_values[i];
    int end = i == non_zero_num - 1 ? rulebook_len : unique_values[i + 1];
    // max(end-start) = kernel_size
210
    for (T j = start; j < end; j++) {
Z
zhangkaihuo 已提交
211 212 213 214 215 216 217
      rulebook_out_indexs[out_indexs[j]] = i;
    }
  }
}

// brief: calculation the distance between start and end
template <typename T>
218
__global__ void DistanceKernel(const T* start, const T* end, T* distance) {
Z
zhangkaihuo 已提交
219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251
  if (threadIdx.x == 0) {
    *distance = end - start;
  }
}

/**
 * @brief product rulebook
 * for input_i in x_indices:
 *   if input_i participate in the convolution calculation:
 *       infer the output_i by input_i and kernel_i
 *       save output_i
 *
 * x_indices: the indices of input features
 * x_dims: the input dims
 * kernel_dims: the kernel dims
 * out_dims: the output dims
 * non_zero_num: the number of input features
 * rulebook: the rulebook to save the kernel index, input index and output index
 * counter: save the number of times each location in the kernel participates in
 *the caculation
**/
template <typename T>
__global__ void ProductRuleBookKernel(const T* x_indices,
                                      const Dims4D x_dims,
                                      const Dims4D kernel_dims,
                                      const Dims4D out_dims,
                                      const int64_t non_zero_num,
                                      const Dims4D paddings,
                                      const Dims4D dilations,
                                      const Dims4D strides,
                                      const bool subm,
                                      T* rulebook,
                                      int* counter,
252
                                      T* in_indexs) {
Z
zhangkaihuo 已提交
253 254 255 256 257 258 259 260 261 262 263
  int tid = threadIdx.x + blockIdx.x * blockDim.x;
  extern __shared__ int counter_buf[];  // kernel_size
  const int kernel_size = kernel_dims[3] * kernel_dims[2] * kernel_dims[1];
  const int offset = kernel_size * non_zero_num;
  for (int i = threadIdx.x; i < kernel_size; i += blockDim.x) {
    counter_buf[i] = 0;
  }
  __syncthreads();

  for (int i = tid; i < non_zero_num; i += gridDim.x * blockDim.x) {
    int kernel_index = 0;
264 265 266 267
    T batch = x_indices[i];
    T in_z = x_indices[i + non_zero_num];
    T in_y = x_indices[i + 2 * non_zero_num];
    T in_x = x_indices[i + 3 * non_zero_num];
Z
zhangkaihuo 已提交
268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285
    if (subm) {
      in_indexs[i] = PointToIndex(batch, in_x, in_y, in_z, x_dims);
    }
    for (int kz = 0; kz < kernel_dims[1]; kz++) {
      for (int ky = 0; ky < kernel_dims[2]; ky++) {
        for (int kx = 0; kx < kernel_dims[3]; kx++) {
          int in_i = -1, out_index = -1, kernel_i = -1;
          if (phi::funcs::sparse::Check(x_dims,
                                        kernel_dims,
                                        paddings,
                                        dilations,
                                        strides,
                                        in_x,
                                        in_y,
                                        in_z,
                                        kx,
                                        ky,
                                        kz)) {
286 287 288
            T out_z = (in_z + paddings[1] - kz * dilations[1]) / strides[1];
            T out_y = (in_y + paddings[2] - ky * dilations[2]) / strides[2];
            T out_x = (in_x + paddings[3] - kx * dilations[3]) / strides[3];
Z
zhangkaihuo 已提交
289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323
            in_i = i;
            out_index = phi::funcs::sparse::PointToIndex<Dims4D>(
                batch, out_x, out_y, out_z, out_dims);
            atomicAdd(&counter_buf[kernel_index], 1);
            kernel_i = kernel_index;
          }
          rulebook[kernel_index * non_zero_num + i] = kernel_i;
          rulebook[kernel_index * non_zero_num + offset + i] = in_i;
          rulebook[kernel_index * non_zero_num + offset * 2 + i] = out_index;
          ++kernel_index;
        }
      }
    }
  }
  __syncthreads();
  for (int i = threadIdx.x; i < kernel_size; i += blockDim.x) {
    atomicAdd(&counter[i], counter_buf[i]);
  }
}

// the basic algorithm can refer to convolution_kernel.cc or
// the second paper
// example:
// 1. the rulebook:
//  the kernel_index:                       0, 0, 0, 1, 1, 1, 2, 2, ....
//  the out_index(key):                     20, 30, 33, 30, 33, 20, 25
// 2. mark the index of out_index(value):   0, 1, 2, 3, 4, 5, 6, ....
// 3. sorted the (key, value)
// 4. unique the (key, value):
//  unique_key:     20, 25, 30, 33
//  unique_values:  0, 2, 3, 5
//  the index of unique_values is: 0, 1, 2, 3
// 5. update the out_index by unique_key, uniqe_value and the index of
// unique_value:
//  the new out_index: 0, 2, 3, 2, 3, 0, 1
324
template <typename T, typename Context, typename IntT = int>
Z
zhangkaihuo 已提交
325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340
int ProductRuleBook(const Context& dev_ctx,
                    const SparseCooTensor& x,
                    const std::vector<int>& kernel_sizes,
                    const std::vector<int>& paddings,
                    const std::vector<int>& dilations,
                    const std::vector<int>& strides,
                    const DDim& out_dims,
                    const bool subm,
                    DenseTensor* rulebook,
                    DenseTensor* counter_per_kernel,
                    DenseTensor* offsets_per_kernel,
                    DenseTensor* out_index,
                    DenseTensor* unique_value,
                    SparseCooTensor* out,
                    std::vector<int>* h_counter,
                    std::vector<int>* h_offsets) {
341 342
  // TODO(zhangkaihuo): use PD_DISPATCH_INTEGRAL_TYPES for secondary dispatch
  auto indices_dtype = paddle::experimental::CppTypeToDataType<IntT>::Type();
Z
zhangkaihuo 已提交
343 344
  const int64_t non_zero_num = x.nnz();
  const auto& non_zero_indices = x.non_zero_indices();
345
  const IntT* indices_ptr = non_zero_indices.data<IntT>();
Z
zhangkaihuo 已提交
346
  DenseTensor in_indexs = phi::Empty<Context>(
347
      dev_ctx, DenseTensorMeta(indices_dtype, {x.nnz()}, DataLayout::NCHW));
Z
zhangkaihuo 已提交
348 349 350 351 352
  int* counter_ptr = counter_per_kernel->data<int>();
  int* offsets_ptr = offsets_per_kernel->data<int>();
  int kernel_size = kernel_sizes[0] * kernel_sizes[1] * kernel_sizes[2];
  const int rulebook_rows = 3;
  const int rulebook_cols = kernel_size * non_zero_num;
353
  DenseTensorMeta rulebook_meta(
354 355 356
      indices_dtype, {rulebook_rows, rulebook_cols}, DataLayout::NCHW);
  *rulebook = phi::Empty(dev_ctx, std::move(rulebook_meta));
  IntT* rulebook_ptr = rulebook->data<IntT>();
Z
zhangkaihuo 已提交
357 358 359 360 361 362 363 364 365 366 367 368 369 370 371

  const auto x_dims = x.dims();
  Dims4D d_x_dims(x_dims[0], x_dims[3], x_dims[2], x_dims[1]);
  Dims4D d_kernel_dims(1, kernel_sizes[2], kernel_sizes[1], kernel_sizes[0]);
  Dims4D d_out_dims(out_dims[0], out_dims[3], out_dims[2], out_dims[1]);
  Dims4D d_paddings(1, paddings[2], paddings[1], paddings[0]);
  Dims4D d_strides(1, strides[2], strides[1], strides[0]);
  Dims4D d_dilations(1, dilations[2], dilations[1], dilations[0]);

  // 1. product rule book
  phi::funcs::SetConstant<Context, int> set_zero;
  set_zero(dev_ctx, counter_per_kernel, 0);
  auto config =
      phi::backends::gpu::GetGpuLaunchConfig1D(dev_ctx, non_zero_num, 1);

372 373 374 375 376 377 378 379 380 381 382 383 384 385 386
  ProductRuleBookKernel<IntT><<<config.block_per_grid.x,
                                config.thread_per_block.x,
                                kernel_size * sizeof(int),
                                dev_ctx.stream()>>>(indices_ptr,
                                                    d_x_dims,
                                                    d_kernel_dims,
                                                    d_out_dims,
                                                    non_zero_num,
                                                    d_paddings,
                                                    d_dilations,
                                                    d_strides,
                                                    subm,
                                                    rulebook_ptr,
                                                    counter_ptr,
                                                    in_indexs.data<IntT>());
Z
zhangkaihuo 已提交
387 388 389

// 2. remove -1
#ifdef PADDLE_WITH_HIP
390
  IntT* last = thrust::remove(thrust::hip::par.on(dev_ctx.stream()),
Z
zhangkaihuo 已提交
391
#else
392
  IntT* last = thrust::remove(thrust::cuda::par.on(dev_ctx.stream()),
Z
zhangkaihuo 已提交
393
#endif
394 395 396
                              rulebook_ptr,
                              rulebook_ptr + rulebook_rows * rulebook_cols,
                              -1);
Z
zhangkaihuo 已提交
397

398
  DistanceKernel<IntT><<<1, 1, 0, dev_ctx.stream()>>>(
Z
zhangkaihuo 已提交
399
      rulebook_ptr, last, rulebook_ptr + 3 * kernel_size * non_zero_num - 1);
400
  IntT rulebook_len = 0;
Z
zhangkaihuo 已提交
401 402 403
  phi::backends::gpu::GpuMemcpyAsync(
      &rulebook_len,
      rulebook_ptr + 3 * kernel_size * non_zero_num - 1,
404
      sizeof(IntT),
Z
zhangkaihuo 已提交
405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420
#ifdef PADDLE_WITH_HIP
      hipMemcpyDeviceToHost,
#else
      cudaMemcpyDeviceToHost,
#endif
      dev_ctx.stream());
  rulebook_len /= 3;
  dev_ctx.Wait();

  if (subm) {
    // At present, hashtable is not used to map the input and output indexes.
    // At present, the intermediate output index is generated by normal
    // convolution,
    // and then the intermediate output index is subtracted from the input index
    // to obain the rulebook.
    // get difference
421 422 423 424
    IntT* A_key_ptr = rulebook_ptr + 2 * rulebook_len;
    IntT* B_key_ptr = in_indexs.data<IntT>();
    DenseTensorMeta val_meta(DataType::INT32, {rulebook_len}, DataLayout::NCHW);
    DenseTensor A_val = phi::Empty<Context>(dev_ctx, std::move(val_meta));
Z
zhangkaihuo 已提交
425 426 427 428 429 430 431 432
    DenseTensor B_val = phi::Empty<Context>(
        dev_ctx, DenseTensorMeta(DataType::INT32, {x.nnz()}, DataLayout::NCHW));
    phi::IndexKernel<int, kps::IdentityFunctor<int>>(
        dev_ctx, &A_val, kps::IdentityFunctor<int>());
    phi::IndexKernel<int, kps::IdentityFunctor<int>>(
        dev_ctx, &B_val, kps::IdentityFunctor<int>());
    DenseTensor key_result = phi::Empty<Context>(
        dev_ctx,
433 434
        DenseTensorMeta(indices_dtype, {rulebook_len + 1}, DataLayout::NCHW));
    DenseTensor val_result = phi::Empty<Context>(dev_ctx, std::move(val_meta));
Z
zhangkaihuo 已提交
435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456

#ifdef PADDLE_WITH_HIP
    thrust::exclusive_scan(thrust::hip::par.on(dev_ctx.stream()),
#else
    thrust::exclusive_scan(thrust::cuda::par.on(dev_ctx.stream()),
#endif
                           counter_ptr,
                           counter_ptr + kernel_size,
                           offsets_ptr);
    std::vector<int> offsets(kernel_size, 0);
    // TODO(zhangkaihuo): used unified memcpy interface
    phi::backends::gpu::GpuMemcpyAsync(offsets.data(),
                                       offsets_ptr,
                                       kernel_size * sizeof(int),
#ifdef PADDLE_WITH_HIP
                                       hipMemcpyDeviceToHost,
#else
                                       cudaMemcpyDeviceToHost,
#endif
                                       dev_ctx.stream());
    dev_ctx.Wait();

457
    thrust::pair<IntT*, int*> end;
Z
zhangkaihuo 已提交
458 459 460 461 462 463 464
    // Because set_diff does not support duplicate data, set_diff is performed
    // separately for each segment of data.
    // TODO(zhangkaihuo): Using hashtable here may get better performance,
    // further tests ared needed.
    for (int i = 0; i < kernel_size; i++) {
      int start = offsets[i];
      int stop = i == kernel_size - 1 ? rulebook_len : offsets[i + 1];
465
      IntT* key_result_start = (i == 0 ? key_result.data<IntT>() : end.first);
Z
zhangkaihuo 已提交
466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482
      int* val_result_start = i == 0 ? val_result.data<int>() : end.second;
      end =
#ifdef PADDLE_WITH_HIP
          thrust::set_difference_by_key(thrust::hip::par.on(dev_ctx.stream()),
#else
          thrust::set_difference_by_key(thrust::cuda::par.on(dev_ctx.stream()),
#endif
                                        A_key_ptr + start,
                                        A_key_ptr + stop,
                                        B_key_ptr,
                                        B_key_ptr + x.nnz(),
                                        A_val.data<int>() + start,
                                        B_val.data<int>(),
                                        key_result_start,
                                        val_result_start);
    }

483 484
    DistanceKernel<IntT><<<1, 1, 0, dev_ctx.stream()>>>(
        key_result.data<IntT>(),
Z
zhangkaihuo 已提交
485
        end.first,
486 487
        key_result.data<IntT>() + rulebook_len);
    IntT len = 0;
Z
zhangkaihuo 已提交
488
    phi::backends::gpu::GpuMemcpyAsync(&len,
489 490
                                       key_result.data<IntT>() + rulebook_len,
                                       sizeof(IntT),
Z
zhangkaihuo 已提交
491 492 493 494 495 496 497 498 499
#ifdef PADDLE_WITH_HIP
                                       hipMemcpyDeviceToHost,
#else
                                       cudaMemcpyDeviceToHost,
#endif
                                       dev_ctx.stream());
    dev_ctx.Wait();
    // set the diff value = -1, and update counter
    auto config = phi::backends::gpu::GetGpuLaunchConfig1D(dev_ctx, len, 1);
500 501 502 503
    SetFlagAndUpdateCounterKernel<IntT><<<config.block_per_grid.x,
                                          config.thread_per_block,
                                          kernel_size * sizeof(int),
                                          dev_ctx.stream()>>>(
Z
zhangkaihuo 已提交
504 505 506 507 508 509 510 511
        val_result.data<int>(),
        len,
        rulebook_len,
        kernel_size,
        rulebook_ptr,
        counter_ptr);
// remove -1
#ifdef PADDLE_WITH_HIP
512
    IntT* last = thrust::remove(thrust::hip::par.on(dev_ctx.stream()),
Z
zhangkaihuo 已提交
513
#else
514
    IntT* last = thrust::remove(thrust::cuda::par.on(dev_ctx.stream()),
Z
zhangkaihuo 已提交
515
#endif
516 517 518 519 520
                                rulebook_ptr,
                                rulebook_ptr + 3 * rulebook_len,
                                -1);
    DistanceKernel<IntT><<<1, 1, 0, dev_ctx.stream()>>>(
        rulebook_ptr, last, key_result.data<IntT>() + rulebook_len);
Z
zhangkaihuo 已提交
521
    phi::backends::gpu::GpuMemcpyAsync(&rulebook_len,
522 523
                                       key_result.data<IntT>() + rulebook_len,
                                       sizeof(IntT),
Z
zhangkaihuo 已提交
524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565
#ifdef PADDLE_WITH_HIP
                                       hipMemcpyDeviceToHost,
#else
                                       cudaMemcpyDeviceToHost,
#endif
                                       dev_ctx.stream());
    dev_ctx.Wait();
    rulebook_len /= 3;
  }

#ifdef PADDLE_WITH_HIP
  thrust::exclusive_scan(thrust::hip::par.on(dev_ctx.stream()),
#else
  thrust::exclusive_scan(thrust::cuda::par.on(dev_ctx.stream()),
#endif
                         counter_ptr,
                         counter_ptr + kernel_size,
                         offsets_ptr);

#ifdef PADDLE_WITH_HIP
  phi::backends::gpu::GpuMemcpyAsync(&(*h_counter)[0],
                                     counter_ptr,
                                     kernel_size * sizeof(int),
                                     hipMemcpyDeviceToHost,
                                     dev_ctx.stream());
  phi::backends::gpu::GpuMemcpyAsync(&(*h_offsets)[0],
                                     offsets_ptr,
                                     kernel_size * sizeof(int),
                                     hipMemcpyDeviceToHost,
                                     dev_ctx.stream());
#else
  phi::backends::gpu::GpuMemcpyAsync(&(*h_counter)[0],
                                     counter_ptr,
                                     kernel_size * sizeof(int),
                                     cudaMemcpyDeviceToHost,
                                     dev_ctx.stream());
  phi::backends::gpu::GpuMemcpyAsync(&(*h_offsets)[0],
                                     offsets_ptr,
                                     kernel_size * sizeof(int),
                                     cudaMemcpyDeviceToHost,
                                     dev_ctx.stream());
#endif
566
  rulebook->Resize({rulebook_rows, static_cast<int>(rulebook_len)});
Z
zhangkaihuo 已提交
567 568

  // 3. sorted or merge the out index
569 570 571 572 573 574 575
  out_index->ResizeAndAllocate({static_cast<int>(rulebook_len)});
  unique_value->ResizeAndAllocate({static_cast<int>(rulebook_len)});
  DenseTensor unique_key = phi::Empty(
      dev_ctx,
      DenseTensorMeta(paddle::experimental::CppTypeToDataType<IntT>::Type(),
                      {static_cast<int>(rulebook_len)},
                      DataLayout::NCHW));
Z
zhangkaihuo 已提交
576 577
  int* out_index_ptr = out_index->data<int>();
  int* unique_value_ptr = unique_value->data<int>();
578 579 580 581 582 583 584 585 586
  IntT* unique_key_ptr = unique_key.data<IntT>();

  IntT* new_end =
      SortedAndUniqueIndex<Context, IntT>(dev_ctx,
                                          rulebook_ptr + 2 * rulebook_len,
                                          rulebook_len,
                                          out_index,
                                          &unique_key,
                                          unique_value);
Z
zhangkaihuo 已提交
587 588 589
  // thrust::distance doesn't support stream parameters
  // const int out_non_zero_num = thrust::distance(unique_key_ptr,
  // new_end.first);
590
  DistanceKernel<IntT><<<1, 1>>>(
Z
zhangkaihuo 已提交
591 592 593
      unique_key_ptr,
      new_end,
      rulebook_ptr + rulebook_rows * rulebook_cols - 1);
594
  IntT out_non_zero_num = 0;
Z
zhangkaihuo 已提交
595 596 597 598
#ifdef PADDLE_WITH_HIP
  phi::backends::gpu::GpuMemcpyAsync(
      &out_non_zero_num,
      rulebook_ptr + rulebook_rows * rulebook_cols - 1,
599
      sizeof(IntT),
Z
zhangkaihuo 已提交
600 601 602 603 604 605
      hipMemcpyDeviceToHost,
      dev_ctx.stream());
#else
  phi::backends::gpu::GpuMemcpyAsync(
      &out_non_zero_num,
      rulebook_ptr + rulebook_rows * rulebook_cols - 1,
606
      sizeof(IntT),
Z
zhangkaihuo 已提交
607 608 609 610 611 612 613 614
      cudaMemcpyDeviceToHost,
      dev_ctx.stream());
#endif
  dev_ctx.Wait();

  // 5. update out_indices and rulebook by unique_value_ptr
  const int64_t sparse_dim = 4;
  DenseTensorMeta indices_meta(
615
      indices_dtype, {sparse_dim, out_non_zero_num}, DataLayout::NCHW);
616 617 618
  DenseTensorMeta values_meta(x.dtype(),
                              {out_non_zero_num, kernel_sizes[4]},
                              x.non_zero_elements().layout());
Z
zhangkaihuo 已提交
619 620 621
  phi::DenseTensor out_indices = phi::Empty(dev_ctx, std::move(indices_meta));
  phi::DenseTensor out_values = phi::Empty(dev_ctx, std::move(values_meta));

622
  IntT* out_indices_ptr = out_indices.data<IntT>();
Z
zhangkaihuo 已提交
623 624 625

  config =
      phi::backends::gpu::GetGpuLaunchConfig1D(dev_ctx, out_non_zero_num, 1);
626 627 628 629 630 631 632 633 634 635 636 637
  UpdateIndexKernel<IntT><<<config.block_per_grid.x,
                            config.thread_per_block.x,
                            0,
                            dev_ctx.stream()>>>(
      unique_key_ptr,
      unique_value_ptr,
      out_index_ptr,
      out_non_zero_num,
      rulebook_len,
      d_out_dims,
      out_indices_ptr,
      rulebook_ptr + 2 * rulebook_len);
Z
zhangkaihuo 已提交
638 639 640 641
  out->SetMember(out_indices, out_values, out_dims, true);
  return rulebook_len;
}

642 643
}  // namespace sparse
}  // namespace phi