distribute_fpn_proposals_op.h 7.1 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30
/* Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserved.

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

    http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */

#pragma once

#include <algorithm>
#include <cmath>
#include <cstring>
#include <string>
#include <vector>
#include "paddle/fluid/framework/op_registry.h"
#include "paddle/fluid/operators/gather.h"
#include "paddle/fluid/operators/math/math_function.h"

namespace paddle {
namespace operators {

const int kBoxDim = 4;

31 32 33 34 35 36 37 38 39 40 41 42 43 44 45
inline std::vector<size_t> GetLodFromRoisNum(const Tensor* rois_num) {
  std::vector<size_t> rois_lod;
  auto* rois_num_data = rois_num->data<int>();
  Tensor cpu_tensor;
  if (platform::is_gpu_place(rois_num->place())) {
    TensorCopySync(*rois_num, platform::CPUPlace(), &cpu_tensor);
    rois_num_data = cpu_tensor.data<int>();
  }
  rois_lod.push_back(static_cast<size_t>(0));
  for (int i = 0; i < rois_num->numel(); ++i) {
    rois_lod.push_back(rois_lod.back() + static_cast<size_t>(rois_num_data[i]));
  }
  return rois_lod;
}

46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82
template <typename T>
static inline T BBoxArea(const T* box, bool normalized) {
  if (box[2] < box[0] || box[3] < box[1]) {
    // If coordinate values are is invalid
    // (e.g. xmax < xmin or ymax < ymin), return 0.
    return static_cast<T>(0.);
  } else {
    const T w = box[2] - box[0];
    const T h = box[3] - box[1];
    if (normalized) {
      return w * h;
    } else {
      // If coordinate values are not within range [0, 1].
      return (w + 1) * (h + 1);
    }
  }
}

template <typename T>
class DistributeFpnProposalsOpKernel : public framework::OpKernel<T> {
 public:
  void Compute(const framework::ExecutionContext& context) const override {
    auto* fpn_rois = context.Input<paddle::framework::LoDTensor>("FpnRois");

    auto multi_fpn_rois =
        context.MultiOutput<paddle::framework::LoDTensor>("MultiFpnRois");

    auto* restore_index =
        context.Output<paddle::framework::Tensor>("RestoreIndex");

    const int min_level = context.Attr<int>("min_level");
    const int max_level = context.Attr<int>("max_level");
    const int refer_level = context.Attr<int>("refer_level");
    const int refer_scale = context.Attr<int>("refer_scale");
    const int num_level = max_level - min_level + 1;

    // check that the fpn_rois is not empty
83 84 85 86 87 88
    if (!context.HasInput("RoisNum")) {
      PADDLE_ENFORCE_EQ(fpn_rois->lod().size(), 1UL,
                        platform::errors::InvalidArgument(
                            "DistributeFpnProposalsOp needs LoD "
                            "with one level."));
    }
89

90 91 92 93 94 95 96 97 98
    std::vector<size_t> fpn_rois_lod;
    int fpn_rois_num;
    if (context.HasInput("RoisNum")) {
      auto* rois_num = context.Input<Tensor>("RoisNum");
      fpn_rois_lod = GetLodFromRoisNum(rois_num);
    } else {
      fpn_rois_lod = fpn_rois->lod().back();
    }
    fpn_rois_num = fpn_rois_lod[fpn_rois_lod.size() - 1];
99 100 101 102 103
    std::vector<int> target_level;
    // std::vector<int> target_level(fpn_rois_num, -1);
    // record the number of rois in each level
    std::vector<int> num_rois_level(num_level, 0);
    std::vector<int> num_rois_level_integral(num_level + 1, 0);
104
    for (size_t i = 0; i < fpn_rois_lod.size() - 1; ++i) {
105 106 107 108 109 110
      Tensor fpn_rois_slice =
          fpn_rois->Slice(fpn_rois_lod[i], fpn_rois_lod[i + 1]);
      const T* rois_data = fpn_rois_slice.data<T>();
      for (int j = 0; j < fpn_rois_slice.dims()[0]; ++j) {
        // get the target level of current rois
        T roi_scale = std::sqrt(BBoxArea(rois_data, false));
111 112
        int tgt_lvl = std::floor(std::log2(roi_scale / refer_scale + (T)1e-6) +
                                 refer_level);
113 114 115 116 117 118 119 120
        tgt_lvl = std::min(max_level, std::max(tgt_lvl, min_level));
        target_level.push_back(tgt_lvl);
        num_rois_level[tgt_lvl - min_level]++;
        rois_data += kBoxDim;
      }
    }
    // define the output rois
    // pointer which point to each level fpn rois
J
jerrywgz 已提交
121
    std::vector<T*> multi_fpn_rois_data(num_level);
122 123 124 125 126 127 128 129 130 131 132 133 134
    // lod0 which will record the offset information of each level rois
    std::vector<std::vector<size_t>> multi_fpn_rois_lod0;
    for (int i = 0; i < num_level; ++i) {
      // allocate memory for each level rois
      multi_fpn_rois[i]->mutable_data<T>({num_rois_level[i], kBoxDim},
                                         context.GetPlace());
      multi_fpn_rois_data[i] = multi_fpn_rois[i]->data<T>();
      std::vector<size_t> lod0(1, 0);
      multi_fpn_rois_lod0.push_back(lod0);
      // statistic start point for each level rois
      num_rois_level_integral[i + 1] =
          num_rois_level_integral[i] + num_rois_level[i];
    }
135
    restore_index->mutable_data<int>({fpn_rois_num, 1}, context.GetPlace());
136 137 138
    int* restore_index_data = restore_index->data<int>();
    std::vector<int> restore_index_inter(fpn_rois_num, -1);
    // distribute the rois into different fpn level by target level
139
    for (size_t i = 0; i < fpn_rois_lod.size() - 1; ++i) {
140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162
      Tensor fpn_rois_slice =
          fpn_rois->Slice(fpn_rois_lod[i], fpn_rois_lod[i + 1]);
      const T* rois_data = fpn_rois_slice.data<T>();
      size_t cur_offset = fpn_rois_lod[i];
      // std::vector<size_t > lod_offset[num_level];
      for (int j = 0; j < num_level; j++) {
        multi_fpn_rois_lod0[j].push_back(multi_fpn_rois_lod0[j][i]);
      }
      for (int j = 0; j < fpn_rois_slice.dims()[0]; ++j) {
        int lvl = target_level[cur_offset + j];
        memcpy(multi_fpn_rois_data[lvl - min_level], rois_data,
               kBoxDim * sizeof(T));
        multi_fpn_rois_data[lvl - min_level] += kBoxDim;
        int index_in_shuffle = num_rois_level_integral[lvl - min_level] +
                               multi_fpn_rois_lod0[lvl - min_level][i + 1];
        restore_index_inter[index_in_shuffle] = cur_offset + j;
        multi_fpn_rois_lod0[lvl - min_level][i + 1]++;
        rois_data += kBoxDim;
      }
    }
    for (int i = 0; i < fpn_rois_num; ++i) {
      restore_index_data[restore_index_inter[i]] = i;
    }
163 164 165 166 167 168 169 170 171 172 173 174
    auto multi_rois_num = context.MultiOutput<Tensor>("MultiLevelRoIsNum");
    if (multi_rois_num.size() > 0) {
      int batch_size = fpn_rois_lod.size() - 1;
      for (int i = 0; i < num_level; ++i) {
        int* rois_num_data = multi_rois_num[i]->mutable_data<int>(
            {batch_size}, context.GetPlace());
        for (int j = 0; j < batch_size; ++j) {
          rois_num_data[j] = static_cast<int>(multi_fpn_rois_lod0[i][j + 1] -
                                              multi_fpn_rois_lod0[i][j]);
        }
      }
    }
175 176 177 178 179 180 181 182 183 184
    // merge lod information into LoDTensor
    for (int i = 0; i < num_level; ++i) {
      framework::LoD lod;
      lod.emplace_back(multi_fpn_rois_lod0[i]);
      multi_fpn_rois[i]->set_lod(lod);
    }
  }
};
}  // namespace operators
}  // namespace paddle