async_executor.py 13.5 KB
Newer Older
W
Wang Guibao 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26
#   Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

from __future__ import print_function

import numpy as np
import contextlib
import six
from .framework import Program, default_main_program, Variable
from . import core
from .executor import global_scope, Executor
from paddle.fluid.proto import data_feed_pb2
from google.protobuf import text_format
from . import io
from .data_feed_desc import DataFeedDesc
27
from .trainer_desc import TrainerDesc, MultiTrainer, DistMultiTrainer
H
heqiaozhi 已提交
28
from .distributed import ps_instance
H
heqiaozhi 已提交
29
from .contrib.utils import hdfs_utils as hdfs
W
Wang Guibao 已提交
30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79

__all__ = ['AsyncExecutor']


class AsyncExecutor(object):
    """
    An asynchronous Executor in Python. Through exploiting the power of
    multi-core processor and data queueing, AsyncExecutor makes data reading
    and cosuming decoupled, each run in multiple threads in parallel.

    Instead of reading data in python side, AsyncExecutor accepts a training
    file list, which will be retrieved in C++, then training inputs will be
    read, parsed and fed to training network within C++ code.

    AsyncExecutor is in active development and the API might change in the near
    future.

    Example:
        >>> data_feed = fluid.DataFeedDesc('data.proto')
        >>> startup_program = fluid.default_startup_program()
        >>> main_program = fluid.default_main_program()
        >>> filelist = ["train_data/part-%d" % i for i in range(100)]
        >>> thread_num = len(filelist) / 4
        >>>
        >>> place = fluid.CPUPlace()
        >>> async_executor = fluid.AsyncExecutor(place)
        >>>
        >>> async_executor.run_startup_program(startup_program)
        >>>
        >>> epoch = 10
        >>> for i in range(epoch):
        >>>     async_executor.run(main_program,
        >>>                        data_feed,
        >>>                        filelist,
        >>>                        thread_num,
        >>>                        [acc],
        >>>                        debug=False)

    Args:
        place(fluid.CPUPlace|None): indicate the executor run on which device.
                                   Only CPUPlace supported

    Note:
        For debugging complicated network in parallel-GPUs, you can test it
        on the executor. They has the exactly same arguments, and expected
        the same results.

    Note: Only running on CPUPlace supported.
    """

D
dongdaxiang 已提交
80
    def __init__(self, place=None, run_mode=""):
W
Wang Guibao 已提交
81 82 83 84 85 86 87 88 89 90
        if place is None:
            place = core.CPUPlace()
        if not isinstance(place, core.CPUPlace):
            raise ValueError("AsyncExecutor only supports CPU device")

        p = core.Place()
        p.set_place(place)

        scope = global_scope()
        self.executor = core.AsyncExecutor(scope, p)
H
heqiaozhi 已提交
91
        self.instance = None
W
Wang Guibao 已提交
92

93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112
    def run(self, program, data_feed, filelist, thread_num, fetch, debug=False):
        if program is None:
            program = default_main_program()
        program_desc = program.desc

        if data_feed is None:
            raise ValueError('ValueError: data_feed should be provided')

        if filelist is None:
            raise ValueError('ValueError: filelist should be provided')

        if isinstance(filelist, str):
            filelist = [filelist]

        if not isinstance(thread_num, int):
            raise TypeError('TypeError: thread_num should be a positive number')

        is_local = self.instance == None
        trainer = None
        if is_local:
113
            trainer = MultiTrainer()
114
        else:
115 116 117
            trainer = DistMultiTrainer()
        trainer.gen_trainer_desc(
            dataset=data_feed, fleet_desc=self.dist_desc, worker="downpour")
118 119 120
        trainer.set_thread(thread_num)
        trainer.set_filelist(filelist)
        trainer.set_data_feed(data_feed)
121 122 123
        with open("trainer_desc.proto", "w") as fout:
            fout.write(trainer._desc())
        # define a trainer and a device_worker here
H
heqiaozhi 已提交
124 125 126
        self.executor.run_from_files(program_desc,
                                     trainer._desc(), debug,
                                     str(id(program_desc)))
127 128

    '''
D
dongdaxiang 已提交
129 130 131 132 133 134 135 136
    def run(self,
            program,
            data_feed,
            filelist,
            thread_num,
            fetch,
            mode="",
            debug=False):
W
Wang Guibao 已提交
137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155
        """
        Run program by this AsyncExecutor. Training dataset will be in filelist.
        Users can also inspect certain variables by naming them in parameter
        :code:`fetch`, like in fluid.Executor. Unlike fluid.Executor, however,
        AsyncExecutor doesn't return fetched variables, instead, it will dump
        the values of each fetched variable to stdandard output.

        Running the dataset will be on multiple threads, within each a thread
        local scope will be created, then all OPs also created in that scope.
        Parameters are updated by all the OPs simultaneously.

        Args:
            program(Program): the program that need to run, if not provied,
                              then default_main_program will be used.
            data_feed(DataFeedDesc): A DataFeedDesc object
            filelist(str): a file containing the training dataset file list
            thread_num(int): number of concurrent training threads. See
                             :code:`Note` for how to set this properly
            fetch(str|list): the var name or a list of var names to inspect
D
dongdaxiang 已提交
156
            mode(str): run mode of this interface
W
Wang Guibao 已提交
157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198
            debug(bool): When set to True, fetch vars will be printed to
                         standard output after each minibatch

        Note:
            the executor will run all operators in the program but not only
            the operators dependent by the fetch_list.

        Note:
            Running AsyncExecutor will be on multiple threads, each bound to a
            CPU core. To achieve best performance, it's suggested to set thread
            num to be equal or slightly less than that of CPU cores.
        """
        if program is None:
            program = default_main_program()
        program_desc = program.desc

        if data_feed is None:
            raise ValueError('ValueError: data_feed should be provided')

        if filelist is None:
            raise ValueError('ValueError: filelist should be provided')

        if isinstance(filelist, str):
            filelist = [filelist]

        if not isinstance(thread_num, int):
            raise TypeError('TypeError: thread_num should be a positive number')

        if fetch is not None:
            if isinstance(fetch, Variable):
                fetch = [fetch]
            fetch_var_names = [var.name for var in fetch]
            for fetch_var in fetch:
                shape = fetch_var.shape
                if shape[len(shape) - 1] != 1:
                    raise AssertionError(
                        "%s: Fetch variable has wrong shape. Only varibles "
                        "with the last dimension size 1 supported." %
                        (fetch_var.name))

        self.executor.run_from_files(program_desc,
                                     data_feed.desc(), filelist, thread_num,
H
heqiaozhi 已提交
199
                                     fetch_var_names, mode, debug, str(id(program_desc)))
200
    '''
H
heqiaozhi 已提交
201

D
dongdaxiang 已提交
202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217
    def download_data(self,
                      afs_path,
                      local_path,
                      fs_default_name,
                      ugi,
                      file_cnt,
                      hadoop_home="$HADOOP_HOME",
                      process_num=12):
        """
        download_data is a default download method for distributed training
        a user download data without this method
        
        Example:
            >>> exe = fluid.AsyncExecutor()
            >>> exe.download_data("/xxx/xxx/xx/",
            >>>                   "./data", "afs://            
218
            >>>  xxx.xxx.xxx.xxx:9901", "xxx,yyy") 
D
dongdaxiang 已提交
219 220 221 222 223 224 225 226 227
        Args:
            afs_path(str): afs_path defined by users
            local_path(str): download data path
            fs_default_name(str): file system server address
            ugi(str): hadoop ugi
            file_cn(int): a user can specify file number for debugging
            hadoop_home(str): hadoop home path
            process_num(int): download process num
        """
H
heqiaozhi 已提交
228
        if self.instance is None:
D
dongdaxiang 已提交
229 230 231 232
            raise ValueError('instance is None, please run'
                             'config_distributed_nodes init instance')

        configs = {"fs.default.name": fs_default_name, "hadoop.job.ugi": ugi}
H
heqiaozhi 已提交
233 234 235 236

        client = hdfs.HDFSClient(hadoop_home, configs)
        downloads = hdfs.multi_download(
            client,
D
dongdaxiang 已提交
237 238
            afs_path,
            local_path,
H
heqiaozhi 已提交
239 240 241
            self.instance.get_worker_index(),
            self.instance.get_node_cnt() / 2,
            multi_processes=process_num)
D
dongdaxiang 已提交
242
        self.instance.barrier_worker()  #wait for download_data
H
heqiaozhi 已提交
243 244

    def get_instance(self):
D
dongdaxiang 已提交
245 246 247 248
        """
        get current node's instance so that user can do operations
        in distributed setting
        """
H
heqiaozhi 已提交
249
        if self.instance is None:
D
dongdaxiang 已提交
250 251 252 253 254 255 256 257 258 259 260 261
            raise ValueError(
                'instance is None, please run config_distributed_nodes init instance'
            )
        return self.instance

    def config_distributed_nodes(self):
        """
        if a user needs to run distributed async executor
        he or she needs to do a global configuration so that 
        information of current process can be obtained
        """
        self.instance = ps_instance.PaddlePSInstance(1, 2)
H
heqiaozhi 已提交
262 263
        return self.instance

H
heqiaozhi 已提交
264
    def stop(self):
D
dongdaxiang 已提交
265 266 267 268
        """
        at the end of process, users should call stop to servers
        and barrier all workers
        """
H
heqiaozhi 已提交
269
        if self.instance is None:
D
dongdaxiang 已提交
270 271 272 273
            raise ValueError(
                'instance is None, please run config_distributed_nodes init instance'
            )
        self.instance.barrier_worker()  #worker do all things
H
heqiaozhi 已提交
274 275
        if self.instance.is_first_worker():
            self.executor.stop_server()
D
dongdaxiang 已提交
276
        self.instance.barrier_worker()  #sync
277 278
        self.instance.barrier_all()
        self.instance.finalize()
H
heqiaozhi 已提交
279

H
heqiaozhi 已提交
280
    def init_server(self, dist_desc):
D
dongdaxiang 已提交
281 282 283 284 285 286
        """
        initialize server of current node if current process is a server
        Args:
        dist_desc(str): a protobuf string that describes 
                        how to init a worker and a server
        """
H
heqiaozhi 已提交
287
        if self.instance is None:
D
dongdaxiang 已提交
288 289 290
            raise ValueError(
                'instance is None, please run config_distributed_nodes init instance'
            )
291 292 293
        self.dist_desc_str = text_format.MessageToString(dist_desc)
        self.dist_desc = dist_desc
        self.executor.init_server(self.dist_desc_str, self.instance._rankid)
H
heqiaozhi 已提交
294 295
        ip = self.executor.start_server()
        self.instance.set_ip(ip)
D
dongdaxiang 已提交
296
        self.instance.barrier_all()  #wait all server start
H
heqiaozhi 已提交
297 298
        ips = self.instance.gather_ips()
        self.executor.gather_servers(ips, self.instance.get_node_cnt())
D
dongdaxiang 已提交
299
        self.instance.barrier_all()  #wait all worker start
H
heqiaozhi 已提交
300

H
heqiaozhi 已提交
301
    def init_worker(self, dist_desc, startup_program):
D
dongdaxiang 已提交
302 303 304 305 306 307 308
        """
        initialize worker of current node if current process is a worker
        Args:
        dist_desc(str): a protobuf string that describes
                        how to init a worker and a server
        startup_program(fluid.Program): startup program of current process
        """
H
heqiaozhi 已提交
309
        if self.instance is None:
D
dongdaxiang 已提交
310 311 312
            raise ValueError(
                'instance is None, please run config_distributed_nodes init instance'
            )
313

314
        self.dist_desc_str = text_format.MessageToString(dist_desc)
315
        self.dist_desc = dist_desc
H
heqiaozhi 已提交
316 317
        place = core.CPUPlace()
        executor = Executor(place)
H
heqiaozhi 已提交
318 319 320 321 322
        if isinstance(startup_program, list):
            for sp in startup_program:
                executor.run(sp)
        else:
            executor.run(startup_program)
H
heqiaozhi 已提交
323

D
dongdaxiang 已提交
324
        self.instance.barrier_all()  #wait all server start
H
heqiaozhi 已提交
325
        ips = self.instance.gather_ips()
326
        self.executor.init_worker(self.dist_desc_str, ips,
D
dongdaxiang 已提交
327 328 329
                                  self.instance.get_node_cnt(),
                                  self.instance._rankid)
        self.instance.barrier_all()  #wait all worker start
H
heqiaozhi 已提交
330 331
        if self.instance.is_first_worker():
            self.executor.init_model()
D
dongdaxiang 已提交
332 333
        self.instance.barrier_worker()  #wait init model

334
    def init_model(self):
D
dongdaxiang 已提交
335 336 337 338
        """
        init_model command that can be invoked from one of the worker
        model parameters are initialized in servers
        """
H
heqiaozhi 已提交
339
        if self.instance is None:
D
dongdaxiang 已提交
340 341 342
            raise ValueError(
                'instance is None, please run config_distributed_nodes init instance'
            )
343 344 345
        self.executor.init_model()

    def save_model(self, save_path):
D
dongdaxiang 已提交
346 347 348 349
        """
        save_model command that can be invoked from one of the worker
        model parameters are saved in servers and upload to save_path of file system
        Args:
H
fix doc  
heqiaozhi 已提交
350
        save_path(str): save path to file system
D
dongdaxiang 已提交
351
        """
H
heqiaozhi 已提交
352
        if self.instance is None:
D
dongdaxiang 已提交
353 354 355
            raise ValueError(
                'instance is None, please run config_distributed_nodes init instance'
            )
356
        self.executor.save_model(save_path)