math.h 5.3 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17
/* Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved.

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

    http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */

#pragma once

// See Note: [ How do we organize the kernel directory ]
18
#include "paddle/pten/api/lib/utils/storage.h"
19
#include "paddle/pten/include/infermeta.h"
C
Chen Weihang 已提交
20
#include "paddle/pten/kernels/complex_kernel.h"
21
#include "paddle/pten/kernels/cpu/math.h"
22
#include "paddle/pten/kernels/gpu/math.h"
23
#include "paddle/pten/kernels/scale_kernel.h"
24 25 26 27 28

namespace pten {

template <typename T, typename ContextT>
DenseTensor Sign(const ContextT& dev_ctx, const DenseTensor& x) {
29
  auto out_meta = UnchangedInferMeta(x.meta());
30 31 32 33
  pten::DenseTensor dense_out(
      pten::make_intrusive<paddle::experimental::SharedStorage>(
          dev_ctx.GetPlace()),
      std::move(out_meta));
34 35 36 37 38
  Sign<T>(dev_ctx, x, &dense_out);
  return dense_out;
}

template <typename T, typename ContextT>
39 40 41 42 43
DenseTensor Mean(const ContextT& dev_ctx,
                 const DenseTensor& x,
                 const std::vector<int64_t>& axis,
                 bool keep_dim) {
  auto out_meta = ReduceInferMeta(x.meta(), axis, keep_dim);
44 45 46 47
  pten::DenseTensor dense_out(
      pten::make_intrusive<paddle::experimental::SharedStorage>(
          dev_ctx.GetPlace()),
      std::move(out_meta));
48
  bool reduce_all = false;
49
  Mean<T>(dev_ctx, x, axis, keep_dim, reduce_all, &dense_out);
50 51 52 53 54 55 56 57 58
  return dense_out;
}

template <typename T, typename ContextT>
DenseTensor Sum(const ContextT& dev_ctx,
                const DenseTensor& x,
                const std::vector<int64_t>& axis,
                DataType dtype,
                bool keep_dim) {
59
  auto out_meta = ReduceInferMeta(x.meta(), axis, keep_dim, dtype);
60 61 62 63
  pten::DenseTensor dense_out(
      pten::make_intrusive<paddle::experimental::SharedStorage>(
          dev_ctx.GetPlace()),
      out_meta);
64 65 66 67 68

  // The real value of reduce_all will be get in kernel
  // so use default value(false) is OK.
  bool reduce_all = false;

69
  Sum<T>(dev_ctx, x, axis, keep_dim, reduce_all, out_meta.dtype, &dense_out);
70 71 72 73 74 75
  return dense_out;
}

template <typename T, typename ContextT>
DenseTensor Scale(const ContextT& dev_ctx,
                  const DenseTensor& x,
C
Chen Weihang 已提交
76
                  const Scalar& scale,
77 78
                  float bias,
                  bool bias_after_scale) {
79
  auto out_meta = UnchangedInferMeta(x.meta());
80 81 82 83
  pten::DenseTensor dense_out(
      pten::make_intrusive<paddle::experimental::SharedStorage>(
          dev_ctx.GetPlace()),
      std::move(out_meta));
84
  Scale<T, ContextT>(dev_ctx, x, scale, bias, bias_after_scale, &dense_out);
85 86 87 88
  return dense_out;
}

template <typename T, typename ContextT>
89 90 91 92
DenseTensor Add(const ContextT& dev_ctx,
                const DenseTensor& x,
                const DenseTensor& y,
                int axis) {
93
  auto out_meta = ElementwiseInferMeta(x.meta(), y.meta(), axis);
94 95 96 97
  pten::DenseTensor dense_out(
      pten::make_intrusive<paddle::experimental::SharedStorage>(
          dev_ctx.GetPlace()),
      std::move(out_meta));
98
  Add<T>(dev_ctx, x, y, axis, &dense_out);
99 100
  return dense_out;
}
101 102 103 104 105 106

template <typename T, typename ContextT>
DenseTensor Subtract(const ContextT& dev_ctx,
                     const DenseTensor& x,
                     const DenseTensor& y,
                     int axis) {
107
  auto out_meta = ElementwiseInferMeta(x.meta(), y.meta(), axis);
108 109 110 111
  pten::DenseTensor dense_out(
      pten::make_intrusive<paddle::experimental::SharedStorage>(
          dev_ctx.GetPlace()),
      std::move(out_meta));
112
  Subtract<T>(dev_ctx, x, y, axis, &dense_out);
113 114 115
  return dense_out;
}

116 117 118 119 120
template <typename T, typename ContextT>
DenseTensor Divide(const ContextT& dev_ctx,
                   const DenseTensor& x,
                   const DenseTensor& y,
                   int axis) {
121
  auto out_meta = ElementwiseInferMeta(x.meta(), y.meta(), axis);
122 123 124 125
  pten::DenseTensor dense_out(
      pten::make_intrusive<paddle::experimental::SharedStorage>(
          dev_ctx.GetPlace()),
      std::move(out_meta));
126
  Divide<T>(dev_ctx, x, y, axis, &dense_out);
127 128
  return dense_out;
}
Y
YuanRisheng 已提交
129 130 131 132 133 134

template <typename T, typename ContextT>
DenseTensor Multiply(const ContextT& dev_ctx,
                     const DenseTensor& x,
                     const DenseTensor& y,
                     int axis) {
135
  auto out_meta = ElementwiseInferMeta(x.meta(), y.meta(), axis);
136 137 138 139
  pten::DenseTensor dense_out(
      pten::make_intrusive<paddle::experimental::SharedStorage>(
          dev_ctx.GetPlace()),
      std::move(out_meta));
140
  Multiply<T>(dev_ctx, x, y, axis, &dense_out);
Y
YuanRisheng 已提交
141 142
  return dense_out;
}
C
chentianyu03 已提交
143 144 145 146 147 148 149 150 151 152 153 154

template <typename T, typename ContextT>
DenseTensor Conj(const ContextT& dev_ctx, const DenseTensor& x) {
  auto out_meta = UnchangedInferMeta(x.meta());
  pten::DenseTensor dense_out(
      pten::make_intrusive<paddle::experimental::SharedStorage>(
          dev_ctx.GetPlace()),
      std::move(out_meta));
  Conj<T>(dev_ctx, x, &dense_out);
  return dense_out;
}

155
}  // namespace pten