test_TrainingAlgorithm.cpp 15.0 KB
Newer Older
H
hedaoyuan 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13
/* Copyright (c) 2016 Baidu, Inc. All Rights Reserve.

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

    http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
H
hedaoyuan 已提交
14 15 16 17 18

#include <gtest/gtest.h>
#include "paddle/utils/Util.h"
#include "paddle/math/TrainingAlgorithmOp.h"
#include "OriginalOptimizerApi.h"
H
hedaoyuan 已提交
19
#include "TensorCheck.h"
H
hedaoyuan 已提交
20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51

using namespace paddle;  // NOLINT

#ifndef PADDLE_TYPE_DOUBLE
P_DEFINE_double(max_diff, 1e-5, "max diff allowed");
#else
P_DEFINE_double(max_diff, 1e-13, "max diff allowed");
#endif

class SetMaxDiff {
public:
  explicit SetMaxDiff(double max_diff) {
    max_diff_ = FLAGS_max_diff;
    FLAGS_max_diff = max_diff;
  }
  ~SetMaxDiff() {
    FLAGS_max_diff = max_diff_;
  }
private:
  double max_diff_;
};

#define COPY_VECTOR_TO_CPU(cpuVec, vector)  \
  do {\
    if (vector->useGpu()) {\
      cpuVec = Vector::create(vector->getSize(), false);\
      cpuVec->copyFrom(*vector);\
    } else {\
      cpuVec = vector;\
    }\
  } while (0)

H
hedaoyuan 已提交
52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71
int VectorCheckErr(const Vector& vector1, const Vector& vector2) {
  CHECK(vector1.getSize() == vector2.getSize());

  const real* data1 = vector1.getData();
  const real* data2 = vector2.getData();
  size_t size = vector1.getSize();
  int count = 0;
  for (size_t i = 0; i < size; i++) {
    real a = data1[i];
    real b = data2[i];
    if (fabs(a - b) > FLAGS_max_diff) {
      if ((fabsf(a - b) / fabsf(a)) > (FLAGS_max_diff / 10.0f)) {
        count++;
      }
    }
  }

  return count;
}

H
hedaoyuan 已提交
72 73 74 75 76 77 78 79
int VectorCheckErr(const VectorPtr& vector1, const VectorPtr& vector2) {
  VectorPtr tmp1;
  VectorPtr tmp2;
  COPY_VECTOR_TO_CPU(tmp1, vector1);
  COPY_VECTOR_TO_CPU(tmp2, vector2);
  return VectorCheckErr(*tmp1, *tmp2);
}

H
hedaoyuan 已提交
80 81 82 83 84 85 86 87 88 89 90
#ifdef PADDLE_DISABLE_TIMER

#define CHECK_VECTORPTR(vector1, vector2)   \
    EXPECT_EQ(VectorCheckErr(vector1, vector2), 0)

#else

#define CHECK_VECTORPTR(vector1, vector2)

#endif

H
hedaoyuan 已提交
91 92 93
typedef std::function<void(size_t size, bool useGpu)> testMatrixFunc;

void testCase(testMatrixFunc matrixFunc) {
H
hedaoyuan 已提交
94
#ifndef PADDLE_ONLY_CPU
H
hedaoyuan 已提交
95
  for (auto useGpu : {false, true}) {
H
hedaoyuan 已提交
96 97 98
#else
  for (auto useGpu : {false}) {
#endif
H
hedaoyuan 已提交
99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414
    for (auto size : {1, 32, 64, 128, 512, 1024, 4096, 32768, 65536, 131072,
                       262144, 524288, 1048576, 2097152}) {
      LOG(INFO) << " size=" << size << " useGpu=" << useGpu;
      matrixFunc(size, useGpu);
    }
  }
}

#define INIT_VECTOR(vec1, vec2, type, size, useGpu) \
    vec1[type] = Vector::create(size, useGpu);      \
    vec2[type] = Vector::create(size, useGpu);      \
    vec1[type]->rand();                             \
    vec2[type]->copyFrom(*vec1[type]);

void testAdagrad(size_t size, bool useGpu) {
  VectorPtr bufs1[NUM_PARAMETER_TYPES];
  VectorPtr bufs2[NUM_PARAMETER_TYPES];
  INIT_VECTOR(bufs1, bufs2, PARAMETER_VALUE, size, useGpu);
  INIT_VECTOR(bufs1, bufs2, PARAMETER_GRADIENT, size, useGpu);
  INIT_VECTOR(bufs1, bufs2, PARAMETER_MOMENTUM, size, useGpu);
  INIT_VECTOR(bufs1, bufs2, PARAMETER_GRADIENT_SQURESUM, size, useGpu);
  INIT_VECTOR(bufs1, bufs2, PARAMETER_GRADIENT_SQURESUM1, size, useGpu);
  INIT_VECTOR(bufs1, bufs2, PARAMETER_LEARNING_RATE, size, useGpu);

  real epsilon = (real)rand() / (real)RAND_MAX;  // NOLINT
  real learningRate = (real)rand() / (real)RAND_MAX;  // NOLINT
  real momentum = (real)rand() / (real)RAND_MAX;  // NOLINT
  real decayRate = (real)rand() / (real)RAND_MAX;  // NOLINT

  EXPRESSION_PERFORMANCE(AdagradParameterOptimizer(bufs1,
    epsilon, learningRate, momentum, decayRate));

  BaseMatrix& value = *bufs2[PARAMETER_VALUE];
  BaseMatrix& grad = *bufs2[PARAMETER_GRADIENT];
  BaseMatrix& mom = *bufs2[PARAMETER_MOMENTUM];
  BaseMatrix& accum_buffer = *bufs2[PARAMETER_GRADIENT_SQURESUM];
  BaseMatrix& accum = *bufs2[PARAMETER_GRADIENT_SQURESUM1];
  BaseMatrix& lr = *bufs2[PARAMETER_LEARNING_RATE];

  EXPRESSION_PERFORMANCE(adagradApply(value, grad, mom, accum_buffer, accum, lr,
    epsilon, learningRate, momentum, decayRate));

  CHECK_VECTORPTR(bufs1[PARAMETER_VALUE], bufs2[PARAMETER_VALUE]);
  CHECK_VECTORPTR(bufs1[PARAMETER_MOMENTUM], bufs2[PARAMETER_MOMENTUM]);
  CHECK_VECTORPTR(bufs1[PARAMETER_GRADIENT_SQURESUM1],
                  bufs2[PARAMETER_GRADIENT_SQURESUM1]);
  CHECK_VECTORPTR(bufs1[PARAMETER_LEARNING_RATE],
                  bufs2[PARAMETER_LEARNING_RATE]);
}

TEST(Training, Adagrad) {
  testCase(testAdagrad);
}

void testAdaDelta(size_t size, bool useGpu) {
  VectorPtr bufs1[NUM_PARAMETER_TYPES];
  VectorPtr bufs2[NUM_PARAMETER_TYPES];
  INIT_VECTOR(bufs1, bufs2, PARAMETER_VALUE, size, useGpu);
  INIT_VECTOR(bufs1, bufs2, PARAMETER_GRADIENT, size, useGpu);
  INIT_VECTOR(bufs1, bufs2, PARAMETER_MOMENTUM, size, useGpu);
  INIT_VECTOR(bufs1, bufs2, PARAMETER_GRADIENT_SQURESUM, size, useGpu);
  INIT_VECTOR(bufs1, bufs2, PARAMETER_GRADIENT_SQURESUM1, size, useGpu);
  INIT_VECTOR(bufs1, bufs2, PARAMETER_LEARNING_RATE, size, useGpu);

  real rou = (real)rand() / (real)RAND_MAX;  // NOLINT
  real epsilon = (real)rand() / (real)RAND_MAX;  // NOLINT
  real learningRate = (real)rand() / (real)RAND_MAX;  // NOLINT
  real momentum = (real)rand() / (real)RAND_MAX;  // NOLINT
  real decayRate = (real)rand() / (real)RAND_MAX;  // NOLINT

  EXPRESSION_PERFORMANCE(AdaDeltaParameterOptimizer(bufs1,
    rou, epsilon, learningRate, momentum, decayRate));

  BaseMatrix& value = *bufs2[PARAMETER_VALUE];
  BaseMatrix& grad = *bufs2[PARAMETER_GRADIENT];
  BaseMatrix& mom = *bufs2[PARAMETER_MOMENTUM];
  BaseMatrix& accum = *bufs2[PARAMETER_GRADIENT_SQURESUM];
  BaseMatrix& accum_update = *bufs2[PARAMETER_GRADIENT_SQURESUM1];
  BaseMatrix& lr = *bufs2[PARAMETER_LEARNING_RATE];

  EXPRESSION_PERFORMANCE(adadeltaApply(value, grad, mom, accum, accum_update,
    lr, rou, epsilon, learningRate, momentum, decayRate));

  CHECK_VECTORPTR(bufs1[PARAMETER_VALUE], bufs2[PARAMETER_VALUE]);
  CHECK_VECTORPTR(bufs1[PARAMETER_MOMENTUM], bufs2[PARAMETER_MOMENTUM]);
  CHECK_VECTORPTR(bufs1[PARAMETER_GRADIENT_SQURESUM],
                  bufs2[PARAMETER_GRADIENT_SQURESUM]);
  CHECK_VECTORPTR(bufs1[PARAMETER_GRADIENT_SQURESUM1],
                  bufs2[PARAMETER_GRADIENT_SQURESUM1]);
  CHECK_VECTORPTR(bufs1[PARAMETER_LEARNING_RATE],
                  bufs2[PARAMETER_LEARNING_RATE]);
}

TEST(Training, AdaDelta) {
  testCase(testAdaDelta);
}

template<bool isFirstTime>
void testRMSProp(size_t size, bool useGpu) {
  VectorPtr bufs1[NUM_PARAMETER_TYPES];
  VectorPtr bufs2[NUM_PARAMETER_TYPES];
  INIT_VECTOR(bufs1, bufs2, PARAMETER_VALUE, size, useGpu);
  INIT_VECTOR(bufs1, bufs2, PARAMETER_GRADIENT, size, useGpu);
  INIT_VECTOR(bufs1, bufs2, PARAMETER_MOMENTUM, size, useGpu);
  INIT_VECTOR(bufs1, bufs2, PARAMETER_GRADIENT_SQURESUM, size, useGpu);
  INIT_VECTOR(bufs1, bufs2, PARAMETER_GRADIENT_SQURESUM1, size, useGpu);
  INIT_VECTOR(bufs1, bufs2, PARAMETER_LEARNING_RATE, size, useGpu);

  /* make sure 'g - f.square()' greater than 0 */
  bufs1[PARAMETER_GRADIENT_SQURESUM]->add(1.0);
  bufs2[PARAMETER_GRADIENT_SQURESUM]->copyFrom(
    *bufs1[PARAMETER_GRADIENT_SQURESUM]);

  real rou = (real)rand() / (real)RAND_MAX;  // NOLINT
  real epsilon = (real)rand() / (real)RAND_MAX;  // NOLINT
  real learningRate = (real)rand() / (real)RAND_MAX;  // NOLINT
  real momentum = (real)rand() / (real)RAND_MAX;  // NOLINT
  real decayRate = (real)rand() / (real)RAND_MAX;  // NOLINT
  real accumulatedRou = rou;

  EXPRESSION_PERFORMANCE(RMSPropParameterOptimizer(bufs1,
    accumulatedRou, rou, epsilon, learningRate, momentum, decayRate,
    isFirstTime));

  BaseMatrix& value = *bufs2[PARAMETER_VALUE];
  BaseMatrix& grad = *bufs2[PARAMETER_GRADIENT];
  BaseMatrix& mom = *bufs2[PARAMETER_MOMENTUM];
  BaseMatrix& sum = *bufs2[PARAMETER_GRADIENT_SQURESUM];
  BaseMatrix& sum1 = *bufs2[PARAMETER_GRADIENT_SQURESUM1];
  BaseMatrix& lr = *bufs2[PARAMETER_LEARNING_RATE];

  EXPRESSION_PERFORMANCE(rmspropApply(value, grad, mom, sum, sum1, lr,
    accumulatedRou, rou, epsilon, learningRate, momentum, decayRate,
    isFirstTime));

  CHECK_VECTORPTR(bufs1[PARAMETER_VALUE], bufs2[PARAMETER_VALUE]);
  CHECK_VECTORPTR(bufs1[PARAMETER_MOMENTUM], bufs2[PARAMETER_MOMENTUM]);
  CHECK_VECTORPTR(bufs1[PARAMETER_GRADIENT_SQURESUM],
                  bufs2[PARAMETER_GRADIENT_SQURESUM]);
  CHECK_VECTORPTR(bufs1[PARAMETER_GRADIENT_SQURESUM1],
                  bufs2[PARAMETER_GRADIENT_SQURESUM1]);
  CHECK_VECTORPTR(bufs1[PARAMETER_LEARNING_RATE],
                  bufs2[PARAMETER_LEARNING_RATE]);
}

TEST(Training, RMSProp) {
  testCase(testRMSProp<true>);
  testCase(testRMSProp<false>);
}

template<bool isFirstTime>
void testDecayedAdagrad(size_t size, bool useGpu) {
  VectorPtr bufs1[NUM_PARAMETER_TYPES];
  VectorPtr bufs2[NUM_PARAMETER_TYPES];
  INIT_VECTOR(bufs1, bufs2, PARAMETER_VALUE, size, useGpu);
  INIT_VECTOR(bufs1, bufs2, PARAMETER_GRADIENT, size, useGpu);
  INIT_VECTOR(bufs1, bufs2, PARAMETER_MOMENTUM, size, useGpu);
  INIT_VECTOR(bufs1, bufs2, PARAMETER_GRADIENT_SQURESUM, size, useGpu);
  INIT_VECTOR(bufs1, bufs2, PARAMETER_LEARNING_RATE, size, useGpu);

  real rou = (real)rand() / (real)RAND_MAX;  // NOLINT
  real epsilon = (real)rand() / (real)RAND_MAX;  // NOLINT
  real learningRate = (real)rand() / (real)RAND_MAX;  // NOLINT
  real momentum = (real)rand() / (real)RAND_MAX;  // NOLINT
  real decayRate = (real)rand() / (real)RAND_MAX;  // NOLINT
  real accumulatedRou = rou;

  if (isFirstTime) {
    bufs1[PARAMETER_GRADIENT_SQURESUM]->zeroMem();
    bufs2[PARAMETER_GRADIENT_SQURESUM]->zeroMem();
  }

  EXPRESSION_PERFORMANCE(DecayedAdagradParameterOptimizer(bufs1,
    accumulatedRou, rou, epsilon, learningRate, momentum, decayRate,
    isFirstTime));

  BaseMatrix& value = *bufs2[PARAMETER_VALUE];
  BaseMatrix& grad = *bufs2[PARAMETER_GRADIENT];
  BaseMatrix& mom = *bufs2[PARAMETER_MOMENTUM];
  BaseMatrix& sum = *bufs2[PARAMETER_GRADIENT_SQURESUM];
  BaseMatrix& lr = *bufs2[PARAMETER_LEARNING_RATE];

  EXPRESSION_PERFORMANCE(decayedAdagradApply(value, grad, mom, sum, lr,
    accumulatedRou, rou, epsilon, learningRate, momentum, decayRate,
    isFirstTime));

  CHECK_VECTORPTR(bufs1[PARAMETER_VALUE], bufs2[PARAMETER_VALUE]);
  CHECK_VECTORPTR(bufs1[PARAMETER_MOMENTUM], bufs2[PARAMETER_MOMENTUM]);
  CHECK_VECTORPTR(bufs1[PARAMETER_GRADIENT_SQURESUM],
                  bufs2[PARAMETER_GRADIENT_SQURESUM]);
  CHECK_VECTORPTR(bufs1[PARAMETER_LEARNING_RATE],
                  bufs2[PARAMETER_LEARNING_RATE]);
}

TEST(Training, DecayedAdagrad) {
  testCase(testDecayedAdagrad<false>);
  testCase(testDecayedAdagrad<true>);
}

void testAdam(size_t size, bool useGpu) {
  VectorPtr bufs1[NUM_PARAMETER_TYPES];
  VectorPtr bufs2[NUM_PARAMETER_TYPES];
  INIT_VECTOR(bufs1, bufs2, PARAMETER_VALUE, size, useGpu);
  INIT_VECTOR(bufs1, bufs2, PARAMETER_GRADIENT, size, useGpu);
  INIT_VECTOR(bufs1, bufs2, PARAMETER_MOMENTUM, size, useGpu);
  INIT_VECTOR(bufs1, bufs2, PARAMETER_SECOND_MOMENTUM, size, useGpu);

  real beta1 = (real)rand() / (real)RAND_MAX;  // NOLINT
  real beta2 = (real)rand() / (real)RAND_MAX;  // NOLINT
  real beta1_power = (real)rand() / (real)RAND_MAX;  // NOLINT
  real beta2_power = (real)rand() / (real)RAND_MAX;  // NOLINT
  real epsilon = (real)rand() / (real)RAND_MAX;  // NOLINT
  real learningRate = (real)rand() / (real)RAND_MAX;  // NOLINT

  EXPRESSION_PERFORMANCE(AdamParameterOptimizer(bufs1,
    beta1, beta2, beta1_power, beta2_power, epsilon, learningRate));

  BaseMatrix& value = *bufs2[PARAMETER_VALUE];
  BaseMatrix& grad = *bufs2[PARAMETER_GRADIENT];
  BaseMatrix& mom = *bufs2[PARAMETER_MOMENTUM];
  BaseMatrix& v = *bufs2[PARAMETER_SECOND_MOMENTUM];

  EXPRESSION_PERFORMANCE(adamApply(value, grad, mom, v,
    beta1, beta2, beta1_power, beta2_power, epsilon, learningRate));

  CHECK_VECTORPTR(bufs1[PARAMETER_VALUE], bufs2[PARAMETER_VALUE]);
  CHECK_VECTORPTR(bufs1[PARAMETER_MOMENTUM], bufs2[PARAMETER_MOMENTUM]);
  CHECK_VECTORPTR(bufs1[PARAMETER_SECOND_MOMENTUM],
                  bufs2[PARAMETER_SECOND_MOMENTUM]);
}

TEST(Training, Adam) {
  testCase(testAdam);
}

void testAdamax(size_t size, bool useGpu) {
  VectorPtr bufs1[NUM_PARAMETER_TYPES];
  VectorPtr bufs2[NUM_PARAMETER_TYPES];
  INIT_VECTOR(bufs1, bufs2, PARAMETER_VALUE, size, useGpu);
  INIT_VECTOR(bufs1, bufs2, PARAMETER_GRADIENT, size, useGpu);
  INIT_VECTOR(bufs1, bufs2, PARAMETER_MOMENTUM, size, useGpu);
  INIT_VECTOR(bufs1, bufs2, PARAMETER_WEIGHTED_INFINITY_NORM, size, useGpu);

  real beta1 = (real)rand() / (real)RAND_MAX;  // NOLINT
  real beta2 = (real)rand() / (real)RAND_MAX;  // NOLINT
  real alpha = (real)rand() / (real)RAND_MAX;  // NOLINT
  int64_t step = 2;

  EXPRESSION_PERFORMANCE(AdamaxParameterOptimizer(bufs1,
    beta1, beta2, step, alpha));

  BaseMatrix& value = *bufs2[PARAMETER_VALUE];
  BaseMatrix& grad = *bufs2[PARAMETER_GRADIENT];
  BaseMatrix& mom = *bufs2[PARAMETER_MOMENTUM];
  BaseMatrix& u = *bufs2[PARAMETER_WEIGHTED_INFINITY_NORM];

  EXPRESSION_PERFORMANCE(adamaxApply(value, grad, mom, u,
    beta1, beta2, step, alpha));

  CHECK_VECTORPTR(bufs1[PARAMETER_VALUE], bufs2[PARAMETER_VALUE]);
  CHECK_VECTORPTR(bufs1[PARAMETER_MOMENTUM], bufs2[PARAMETER_MOMENTUM]);
  CHECK_VECTORPTR(bufs1[PARAMETER_WEIGHTED_INFINITY_NORM],
                  bufs2[PARAMETER_WEIGHTED_INFINITY_NORM]);
}

TEST(Training, Adamax) {
#ifndef PADDLE_TYPE_DOUBLE
  SetMaxDiff diff(1e-4);
#endif
  testCase(testAdamax);
}

void testSparseMomentum(size_t size, bool useGpu) {
  VectorPtr bufs1[NUM_PARAMETER_TYPES];
  VectorPtr bufs2[NUM_PARAMETER_TYPES];
  INIT_VECTOR(bufs1, bufs2, PARAMETER_VALUE, size, useGpu);
  INIT_VECTOR(bufs1, bufs2, PARAMETER_GRADIENT, size, useGpu);
  INIT_VECTOR(bufs1, bufs2, PARAMETER_MOMENTUM_UT, size, useGpu);
  INIT_VECTOR(bufs1, bufs2, PARAMETER_MOMENTUM_VT, size, useGpu);

  real alpha = (real)rand() / (real)RAND_MAX;  // NOLINT
  real beta = (real)rand() / (real)RAND_MAX;  // NOLINT
  real gamma = (real)rand() / (real)RAND_MAX;  // NOLINT
  real tau = (real)rand() / (real)RAND_MAX;  // NOLINT
  real learningRate = (real)rand() / (real)RAND_MAX;  // NOLINT

  EXPRESSION_PERFORMANCE(SparseMomentumParameterOptimizer(bufs1,
    alpha, beta, gamma, tau, learningRate));

  BaseMatrix& value = *bufs2[PARAMETER_VALUE];
  BaseMatrix& grad = *bufs2[PARAMETER_GRADIENT];
  BaseMatrix& momU = *bufs2[PARAMETER_MOMENTUM_UT];
  BaseMatrix& momV = *bufs2[PARAMETER_MOMENTUM_VT];

  EXPRESSION_PERFORMANCE(sparseMomentumApply(value, grad, momU, momV,
    alpha, beta, gamma, tau, learningRate));

  CHECK_VECTORPTR(bufs1[PARAMETER_VALUE], bufs2[PARAMETER_VALUE]);
  CHECK_VECTORPTR(bufs1[PARAMETER_MOMENTUM_UT],
                  bufs2[PARAMETER_MOMENTUM_UT]);
  CHECK_VECTORPTR(bufs1[PARAMETER_MOMENTUM_VT],
                  bufs2[PARAMETER_MOMENTUM_VT]);
}

TEST(Training, SparseMomentum) {
  testCase(testSparseMomentum);
}

int main(int argc, char** argv) {
  testing::InitGoogleTest(&argc, argv);
  initMain(argc, argv);
  hl_start();
  hl_init(FLAGS_gpu_id);
  return RUN_ALL_TESTS();
}