distributed_strategy.py 21.9 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14
#   Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

15
import paddle
16 17
from paddle.fleet.proto import distributed_strategy_pb2
from paddle.fluid.framework import Variable
18
import google.protobuf.text_format
19 20


21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45
def get_msg_dict(msg):
    res_dict = {}
    fields = msg.DESCRIPTOR.fields
    for f in fields:
        res_dict[f.name] = getattr(msg, f.name)
    return res_dict


def assign_configs_value(msg, config):
    fields = msg.DESCRIPTOR.fields
    for key in config:
        for f in fields:
            if key == f.name:
                if f.label == 3:
                    getattr(msg, f.name).extend(config[f.name])
                elif f.label == 1 or f.label == 2:
                    setattr(msg, f.name, config[f.name])


def check_configs_key(msg, config, field_name):
    key_list = msg.DESCRIPTOR.fields_by_name.keys()
    for key in config:
        assert key in key_list, "key:{} not in {}".format(key, field_name)


46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84
class DistributedJobInfo(object):
    """
    DistributedJobInfo will serialize all distributed training information
    Just for inner use: 1) debug 2) replicate experiments
    """

    def __init__(self):
        self.job_info = distributed_strategy_pb2.DistributedJobInfo()

    def _set_worker_num(self, worker_num):
        self.job_info.worker_num = worker_num

    def _set_server_num(self, server_num):
        self.job_info.server_num = server_num

    def _set_worker_ips(self, worker_ips):
        self.job_info.worker_ips.extend(worker_ips)

    def _set_server_endpoints(self, server_endpoints):
        self.job_info.server_endpoints.extend(server_endpoints)

    def _set_origin_startup(self, origin_startup_prog):
        self.job_info.origin_startup = str(origin_startup_prog)

    def _set_origin_main(self, origin_main_prog):
        self.job_info.origin_main = str(origin_main_prog)

    def _distributed_main(self, distributed_main_prog):
        self.job_info.distributed_main = str(distributed_main_prog)

    def _optimizer_name(self, optimizer_name):
        self.job_info.optimizer_name = optimizer_name

    def _set_distributed_strategy(self, dist_strategy):
        self.job_info.strategy = dist_strategy


class DistributedStrategy(object):
    def __init__(self):
85 86 87 88 89 90 91 92 93 94 95 96
        """
        DistributedStrategy is the main configuration entry for distributed training of Paddle.
        All of the distributed training configurations can be configured in DistributedStrategy,
        such as automatic mixed precision (AMP), Layer-wise Adaptive Rate Scaling (LARS), 
        asynchronous update parameter server(ASGD), etc.
        
        DistributedStrategy can be serialized into protobuf file or deserialized from protobuf file

        Users who run local training usually configure BuildStrategy and ExecutionStrategy, and 
        DistributedStrategy supports configurations from BuildStrategy and ExecutionStrategy

        """
97 98
        self.strategy = distributed_strategy_pb2.DistributedStrategy()

99
    def save_to_prototxt(self, output):
100 101 102 103 104 105 106 107 108 109 110 111 112
        """
        Serialize current DistributedStrategy to string and save to output file

        Examples:
          .. code-block:: python
        
            import paddle.fleet as fleet
            strategy = fleet.DistributedStrategy()
            strategy.dgc = True
            strategy.recompute = True
            strategy.recompute_configs = {"checkpoint": ["x"]}
            strategy.save_to_prototxt("dist_strategy.prototxt")
        """
113 114 115 116
        with open(output, "w") as fout:
            fout.write(str(self.strategy))

    def load_from_prototxt(self, pb_file):
117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203
        """
        Load from prototxt file for DistributedStrategy initialization

        Examples:
          .. code-block:: python

            import paddle.fleet as fleet
            strategy = fleet.DistributedStrategy()
            strategy.load_from_prototxt("dist_strategy.protoxt")
        """
        with open(pb_file, 'r') as f:
            self.strategy = google.protobuf.text_format.Merge(
                str(f.read()), self.strategy)

    @property
    def execution_strategy(self):
        """
        Configure ExecutionStrategy for DistributedStrategy

        Examples:
          .. code-block:: python

            exe_strategy = paddle.fluid.ExecutionStrategy()
            exe_strategy.num_threads = 10
            exe_strategy.num_iteration_per_drop_scope = 10
            exe_strategy.num_iteration_per_run = 10

            strategy = paddle.fleet.DistributedStrategy()
            strategy.execution_strategy = exe_strategy
        """
        execution_strategy = paddle.fluid.ExecutionStrategy()
        fields = self.strategy.execution_strategy.DESCRIPTOR.fields
        for f in fields:
            setattr(execution_strategy, f.name,
                    getattr(self.strategy.execution_strategy, f.name))
        return execution_strategy

    @execution_strategy.setter
    def execution_strategy(self, strategy):
        fields = self.strategy.execution_strategy.DESCRIPTOR.fields
        for f in fields:
            setattr(self.strategy.execution_strategy, f.name,
                    getattr(strategy, f.name))

    @property
    def build_strategy(self):
        """
        Configure BuildStrategy for DistributedStrategy
        Note that the properties of BuildStrategy are valid in DistributedStrategy
        only if the property is non-distributed strategy.

        Examples:
          .. code-block:: python

            build_strategy = paddle.fluid.BuildStrategy()
            build_strategy.enable_sequential_execution = True
            build_strategy.fuse_elewise_add_act_ops = True
            build_strategy.fuse_bn_act_ops = True
            build_strategy.enable_auto_fusion = True
            build_strategy.fuse_relu_depthwise_conv = True
            build_strategy.fuse_broadcast_ops = True
            build_strategy.fuse_all_optimizer_ops = True
            build_strategy.enable_inplace = True
            
            strategy = paddle.fleet.DistributedStrategy()
            strategy.build_strategy = build_strategy
        """

        build_strategy = paddle.fluid.BuildStrategy()
        fields = self.strategy.build_strategy.DESCRIPTOR.fields
        for f in fields:
            setattr(build_strategy, f.name,
                    getattr(self.strategy.build_strategy, f.name))
        return build_strategy

    @build_strategy.setter
    def build_strategy(self, strategy):
        fields = self.strategy.build_strategy.DESCRIPTOR.fields
        for f in fields:
            if f.label == 1 or f.label == 2:  # optional and required field
                setattr(self.strategy.build_strategy, f.name,
                        getattr(strategy, f.name))
            elif f.label == 3:  # repeated field
                getattr(self.strategy.build_strategy,
                        f.name).extend(getattr(strategy, f.name))

    @property
D
Dong Daxiang 已提交
204
    def a_sync(self):
205 206 207 208 209 210 211 212 213 214 215 216 217 218
        """
        Indicating whether we are using asynchronous stocastic gradient descent updates
        for training. This property is valid when we are using parameter server training, 
        which is implied by setting approperate RoleMaker
        Default value: True

        Examples:
          .. code-block:: python

            import paddle.fleet as fleet
            role_maker = fleet.PaddleCloudRoleMaker()
            fleet.init(role_maker)

            strategy = fleet.DistributedStrategy()
D
Dong Daxiang 已提交
219
            strategy.a_sync = True  # by default this is True
220 221 222 223
            
            # code block for defining loss and local optimizer
            # sgd = fleet.distributed_optimizer(optimizer, strategy)
        """
D
Dong Daxiang 已提交
224
        return self.strategy.a_sync
225

D
Dong Daxiang 已提交
226 227
    @a_sync.setter
    def a_sync(self, flag):
228
        if isinstance(flag, bool):
D
Dong Daxiang 已提交
229
            self.strategy.a_sync = flag
230
        else:
D
Dong Daxiang 已提交
231
            print("WARNING: a_sync should have value of bool type")
232 233

    @property
D
Dong Daxiang 已提交
234
    def a_sync_configs(self):
235
        """
D
Dong Daxiang 已提交
236
        Set a_sync update configurations. In general, asynchronous parameter server
237 238
        training has serveral configurable settings that can be configured through
        a dict.
239

240
        **Notes**:
D
Dong Daxiang 已提交
241
            **Detailed arguments for a_sync_configs**
242 243 244 245 246 247 248
            **k_step**: number of local optimization updates before communication
            **max_merge_var_num**: maximum number of merged gradients before communication
            **send_queue_size**: a buffer size of worker communication
            **independent_recv_thread**: if we are using independent recv thread for communication
            **thread_pool_size**: number of thread pool
            **send_wait_times**: waiting time for sending gradients
            **runtime_split_send_recv**: if we are using Tensor split for send and recv during runtime
249

250 251
        Examples:
          .. code-block:: python
252

253 254 255
            import paddle.fleet as fleet
            role_maker = fleet.PaddleCloudRoleMaker()
            fleet.init(role_maker)
256

257
            strategy = fleet.DistributedStrategy()
D
Dong Daxiang 已提交
258
            strategy.a_sync = True  # by default this is True
259
            configs = {"k_step": 10000, "send_queue_size": 32}
D
Dong Daxiang 已提交
260
            strategy.a_sync_configs = configs
261

262 263 264
            # code block for defining loss and local optimizer
            # sgd = fleet.distributed_optimizer(optimizer, strategy)
        """
D
Dong Daxiang 已提交
265
        return get_msg_dict(self.strategy.a_sync_configs)
266

D
Dong Daxiang 已提交
267 268 269 270 271
    @a_sync_configs.setter
    def a_sync_configs(self, configs):
        check_configs_key(self.strategy.a_sync_configs, configs,
                          "a_sync_configs")
        assign_configs_value(self.strategy.a_sync_configs, configs)
272

273
    @property
274 275 276 277
    def amp(self):
        """
        Indicating whether we are using automatic mixed precision training
        Default Value: False
278

279 280
        Examples:
          .. code-block:: python
281

282 283 284
            import paddle.fleet as fleet
            strategy = fleet.DistributedStrategy()
            strategy.amp = True # by default this is false
285

286 287
        """
        return self.strategy.amp
288

289 290
    @amp.setter
    def amp(self, flag):
291
        if isinstance(flag, bool):
292
            self.strategy.amp = flag
293
        else:
294
            print("WARNING: amp should have value of bool type")
295 296

    @property
297 298
    def amp_configs(self):
        return get_msg_dict(self.strategy.amp_configs)
299

300 301 302 303
    @amp_configs.setter
    def amp_configs(self, configs):
        check_configs_key(self.strategy.amp_configs, configs, "amp_configs")
        assign_configs_value(self.strategy.amp_configs, configs)
304 305

    @property
306 307 308 309 310 311 312 313 314 315 316 317 318 319 320
    def recompute(self):
        """
        Indicating whether we are using forward recomputation for memory optimization
        Default value: False

        Examples:
          .. code-block:: python

            import paddle.fleet as fleet
            strategy = fleet.DistributedStrategy()
            strategy.recompute = True
            # suppose x and y are names of checkpoint tensors for recomputation
            strategy.recompute_configs = {"checkpoints": ["x", "y"]}
        """
        return self.strategy.recompute
321

322 323 324 325 326 327 328 329 330
    @property
    def sync_nccl_allreduce(self):
        return self.strategy.sync_nccl_allreduce

    @sync_nccl_allreduce.setter
    def sync_nccl_allreduce(self, flag):
        if isinstance(flag, bool):
            self.strategy.sync_nccl_allreduce = flag
        else:
331
            print("WARNING: sync_nccl_allreduce should have value of bool type")
332

333
    @property
334 335
    def use_hierarchical_allreduce(self):
        return self.strategy.use_hierarchical_allreduce
336

337 338
    @use_hierarchical_allreduce.setter
    def use_hierarchical_allreduce(self, flag):
339
        if isinstance(flag, bool):
340
            self.strategy.use_hierarchical_allreduce = flag
341 342
        else:
            print(
343
                "WARNING: use_hierarchical_allreduce should have value of bool type"
344 345 346
            )

    @property
347 348
    def hierarchical_allreduce_inter_nranks(self):
        return self.strategy.hierarchical_allreduce_inter_nranks
349

350 351 352 353
    @hierarchical_allreduce_inter_nranks.setter
    def hierarchical_allreduce_inter_nranks(self, value):
        if isinstance(value, int):
            self.strategy.hierarchical_allreduce_inter_nranks = value
354 355
        else:
            print(
356
                "WARNING: hierarchical_allreduce_inter_nranks should have value of int type"
357 358
            )

359
    @property
360 361
    def sync_batch_norm(self):
        return self.strategy.sync_batch_norm
362

363 364
    @sync_batch_norm.setter
    def sync_batch_norm(self, flag):
365
        if isinstance(flag, bool):
366
            self.strategy.sync_batch_norm = flag
367
        else:
368
            print("WARNING: sync_batch_norm should have value of bool type")
369 370 371 372 373 374 375 376 377 378 379 380

    @property
    def fuse_all_reduce_ops(self):
        return self.strategy.fuse_all_reduce_ops

    @fuse_all_reduce_ops.setter
    def fuse_all_reduce_ops(self, flag):
        if isinstance(flag, bool):
            self.strategy.fuse_all_reduce_ops = flag
        else:
            print("WARNING: fuse_all_reduce_ops should have value of bool type")

381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404
    @property
    def fuse_grad_size_in_MB(self):
        return self.strategy.fuse_grad_size_in_MB

    @fuse_grad_size_in_MB.setter
    def fuse_grad_size_in_MB(self, value):
        if isinstance(value, int):
            self.strategy.fuse_grad_size_in_MB = value
        else:
            print("WARNING: fuse_grad_size_in_MB should have value of int type")

    @property
    def _fuse_grad_size_in_TFLOPS(self):
        return self.strategy.fuse_grad_size_in_TFLOPS

    @_fuse_grad_size_in_TFLOPS.setter
    def _fuse_grad_size_in_TFLOPS(self, value):
        if isinstance(value, float):
            self.strategy.fuse_grad_size_in_TFLOPS = value
        else:
            print(
                "WARNING: fuse_grad_size_in_TFLOPS should have value of float type"
            )

405
    @property
406 407
    def nccl_comm_num(self):
        return self.strategy.nccl_comm_num
408

409 410
    @nccl_comm_num.setter
    def nccl_comm_num(self, value):
411
        if isinstance(value, int):
412
            self.strategy.nccl_comm_num = value
413
        else:
414
            print("WARNING: nccl_comm_num should have value of int type")
415

416 417
    @recompute.setter
    def recompute(self, flag):
418
        if isinstance(flag, bool):
419
            self.strategy.recompute = flag
420
        else:
421
            print("WARNING: recompute should have value of bool type")
422 423

    @property
424 425 426 427
    def recompute_configs(self):
        """
        Set recompute configurations. In general, the recompute strategy of current
        implementation should have some manually assign checkpoints
428

429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444
        Examples:
          .. code-block:: python
        
            import paddle.fleet as fleet
            strategy = fleet.DistributedStrategy()
            strategy.recompute = True
            strategy.recompute_configs = {"checkpionts": ["x", "y"]}

        """
        return get_msg_dict(self.strategy.recompute_configs)

    @recompute_configs.setter
    def recompute_configs(self, configs):
        check_configs_key(self.strategy.recompute_configs, configs,
                          "checkpoint_configs")
        assign_configs_value(self.strategy.recompute_configs, configs)
445 446

    @property
447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462
    def pipeline(self):
        """
        Indicating whether we are using pipeline parallelism for distributed training.
        Current implementation mainly focus on single GPU machine pipeline parallelism and
        data parallelism across GPU machine. The pipeline information is indicated through
        device_guard information in user-defined program.

        Examples:
          .. code-block:: python
        
            import paddle.fleet as fleet
            strategy = fleet.DistributedStrategy()
            strategy.pipeline = True

        """
        return self.strategy.pipeline
463

464 465
    @pipeline.setter
    def pipeline(self, flag):
466
        if isinstance(flag, bool):
467
            self.strategy.pipeline = flag
468
        else:
469
            print("WARNING: pipeline should have value of bool type")
470 471

    @property
472 473 474 475 476 477 478 479 480 481
    def pipeline_configs(self):
        """
        Set pipeline parallelism configurations. In pipeline parallelism,
        different parts of neural networks are running on different GPUS.
        There are Tensor queue buffer between each pair of neighborhood GPUS 
        that are responsible for synchronizing hidden Tensor results between
        GPUs. Pipeline parallelism consists of serveral producer-consumer style
        hardware pairs, such as GPU-GPU, CPU-GPU, GPU-XPU. The best way to speedup
        pipeline parallelism is to make the size of Tensor in Tensor queue smaller, 
        so that we will have a faster producer for downstream consumers.
482

483 484 485
        **Notes**:
            **Detailed arguments for pipeline_configs**
            **micro_batch**: the number of small batches in each user defined batch
486

487 488 489 490 491 492 493
        Examples:
          .. code-block:: python
        
            import paddle.fleet as fleet
            strategy = fleet.DistributedStrategy()
            strategy.pipeline = True
            strategy.pipeline_configs = {"micro_batch": 12}
494

495
        """
496

497
        return get_msg_dict(self.strategy.pipeline_configs)
498

499 500 501 502 503
    @pipeline_configs.setter
    def pipeline_configs(self, configs):
        check_configs_key(self.strategy.pipeline_configs, configs,
                          "pipeline_configs")
        assign_configs_value(self.strategy.pipeline_configs, configs)
504 505

    @property
506 507
    def localsgd(self):
        return self.strategy.localsgd
508

509 510 511 512
    @localsgd.setter
    def localsgd(self, flag):
        if isinstance(flag, bool):
            self.strategy.localsgd = flag
513
        else:
514
            print("WARNING: localsgd should have value of bool type")
515 516

    @property
517 518
    def localsgd_configs(self):
        return get_msg_dict(self.strategy.localsgd_configs)
519

520 521 522 523 524
    @localsgd_configs.setter
    def localsgd_configs(self, configs):
        check_configs_key(self.strategy.localsgd_configs, configs,
                          "localsgd_configs")
        assign_configs_value(self.strategy.localsgd_configs, configs)
525 526

    @property
527 528
    def dgc(self):
        return self.strategy.dgc
529

530 531 532 533
    @dgc.setter
    def dgc(self, flag):
        if isinstance(flag, bool):
            self.strategy.dgc = flag
534
        else:
535
            print("WARNING: dgc should have value of bool type")
536 537

    @property
538 539
    def dgc_configs(self):
        return get_msg_dict(self.strategy.dgc_configs)
540

541 542 543 544
    @dgc_configs.setter
    def dgc_configs(self, configs):
        check_configs_key(self.strategy.dgc_configs, configs, "dgc_configs")
        assign_configs_value(self.strategy.dgc_configs, configs)
545 546

    @property
547
    def gradient_merge(self):
548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564
        """
        Gradient Merge, also called as Gradient Accumulation,
        is a strategy for large batch training. With this strategy,
        model parameter will not be updated until user-defined steps.
        For each step, the forward network and the backward network
        will run to calculate the gradient of model parameters.
        For every k step, the optimization network will run,
        applying a specific optimization method (such as SGD, Adam)
        to model parameters.

        Examples:
        .. code-block:: python
            import paddle.fleet as fleet
            strategy = fleet.DistributedStrategy()
            strategy.gradient_merge = True
            strategy.gradient_merge_configs = {"k_steps": 4, "avg": True}
        """
565
        return self.strategy.gradient_merge
566

567 568
    @gradient_merge.setter
    def gradient_merge(self, flag):
569
        if isinstance(flag, bool):
570
            self.strategy.gradient_merge = flag
571
        else:
572 573 574 575
            print("WARNING: gradient_merge should have value of bool type")

    @property
    def gradient_merge_configs(self):
576 577 578 579 580 581 582 583 584 585 586 587
        """
        the key-value configs of distribute_strategy
        Keys: 
            k_steps (int): the update period of the parameters
            avg (bool): whether to average the gradients of each mini-batch,
                the default value is `True`
        Example:
            import paddle.fleet as fleet
            strategy = fleet.DistributedStrategy()
            strategy.gradient_merge = True
            strategy.gradient_merge_configs = {"k_steps": 4, "avg": True}
        """
588 589 590 591 592 593 594
        return get_msg_dict(self.strategy.gradient_merge_configs)

    @gradient_merge_configs.setter
    def gradient_merge_configs(self, configs):
        check_configs_key(self.strategy.gradient_merge_configs, configs,
                          "gradient_configs")
        assign_configs_value(self.strategy.gradient_merge_configs, configs)
595 596

    @property
597 598
    def lars(self):
        return self.strategy.lars
599

600 601
    @lars.setter
    def lars(self, flag):
602
        if isinstance(flag, bool):
603
            self.strategy.lars = flag
604
        else:
605
            print("WARNING: lars should have value of bool type")
606 607

    @property
608 609
    def lamb(self):
        return self.strategy.lamb
610

611 612
    @lamb.setter
    def lamb(self, flag):
613
        if isinstance(flag, bool):
614
            self.strategy.lamb = flag
615
        else:
616
            print("WARNING: lamb should have value of bool type")
617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640

    @property
    def elastic(self):
        return self.strategy.elastic

    @elastic.setter
    def elastic(self, flag):
        if isinstance(flag, bool):
            self.strategy.elastic = flag
        else:
            print("WARNING: elastic should have value of bool type")

    @property
    def auto(self):
        return self.strategy.auto

    @auto.setter
    def auto(self, flag):
        if isinstance(flag, bool):
            self.strategy.auto = flag
        else:
            print("WARNING: auto should have value of bool type")

    def __repr__(self):
D
Dong Daxiang 已提交
641 642 643
        fields = self.strategy.DESCRIPTOR.fields
        for f in fields:
            print("{}: {}".format(f.name, f.default_value))
644
        return str(self.strategy)