PriorBox.cpp 5.5 KB
Newer Older
G
gaoyuan 已提交
1
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserve.
Y
yuan 已提交
2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

    http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */

#include "Layer.h"
#include "paddle/math/BaseMatrix.h"
G
gaoyuan 已提交
17
#include "paddle/math/Matrix.h"
Y
yuan 已提交
18 19

namespace paddle {
G
gaoyuan 已提交
20
/**
21
 * @brief A layer for generating priorbox locations and variances.
G
gaoyuan 已提交
22 23
 * - Input: Two and only two input layer are accepted. The input layer must be
 *        be a data output layer and a convolution output layer.
24
 * - Output: The priorbox locations and variances of the input data.
G
gaoyuan 已提交
25 26 27 28
 * Reference:
 *    Wei Liu, Dragomir Anguelov, Dumitru Erhan, Christian Szegedy, Scott Reed,
 *    Cheng-Yang Fu, Alexander C. Berg. SSD: Single Shot MultiBox Detector
 */
Y
yuan 已提交
29 30 31 32 33

class PriorBoxLayer : public Layer {
public:
  explicit PriorBoxLayer(const LayerConfig& config) : Layer(config) {}
  bool init(const LayerMap& layerMap, const ParameterMap& parameterMap);
34

Y
yuan 已提交
35 36
  void forward(PassType passType);
  void backward(const UpdateCallback& callback) {}
37 38

protected:
Y
yuan 已提交
39 40 41
  int numPriors_;
  std::vector<int> minSize_;
  std::vector<int> maxSize_;
G
gaoyuan 已提交
42 43
  std::vector<real> aspectRatio_;
  std::vector<real> variance_;
Y
yuan 已提交
44 45 46 47
  MatrixPtr buffer_;
};

bool PriorBoxLayer::init(const LayerMap& layerMap,
G
gaoyuan 已提交
48
                         const ParameterMap& parameterMap) {
Y
yuan 已提交
49
  Layer::init(layerMap, parameterMap);
G
gaoyuan 已提交
50 51 52
  auto pbConf = config_.inputs(0).priorbox_conf();
  std::copy(pbConf.min_size().begin(),
            pbConf.min_size().end(),
Y
yuan 已提交
53
            std::back_inserter(minSize_));
G
gaoyuan 已提交
54 55
  std::copy(pbConf.max_size().begin(),
            pbConf.max_size().end(),
Y
yuan 已提交
56
            std::back_inserter(maxSize_));
G
gaoyuan 已提交
57 58
  std::copy(pbConf.aspect_ratio().begin(),
            pbConf.aspect_ratio().end(),
Y
yuan 已提交
59
            std::back_inserter(aspectRatio_));
G
gaoyuan 已提交
60 61
  std::copy(pbConf.variance().begin(),
            pbConf.variance().end(),
Y
yuan 已提交
62 63
            std::back_inserter(variance_));
  // flip
G
gaoyuan 已提交
64 65
  int inputRatioLength = aspectRatio_.size();
  for (int index = 0; index < inputRatioLength; index++)
G
gaoyuan 已提交
66
    aspectRatio_.push_back(1 / aspectRatio_[index]);
Y
yuan 已提交
67 68
  aspectRatio_.push_back(1.);
  numPriors_ = aspectRatio_.size();
G
gaoyuan 已提交
69
  if (maxSize_.size() > 0) numPriors_++;
Y
yuan 已提交
70 71 72 73 74
  return true;
}

void PriorBoxLayer::forward(PassType passType) {
  Layer::forward(passType);
G
gaoyuan 已提交
75 76 77
  auto input = getInput(0);
  int layerWidth = input.getFrameWidth();
  int layerHeight = input.getFrameHeight();
Y
yuan 已提交
78

G
gaoyuan 已提交
79 80 81
  auto image = getInput(1);
  int imageWidth = image.getFrameWidth();
  int imageHeight = image.getFrameHeight();
G
gaoyuan 已提交
82

G
gaoyuan 已提交
83 84
  real stepW = static_cast<real>(imageWidth) / layerWidth;
  real stepH = static_cast<real>(imageHeight) / layerHeight;
G
gaoyuan 已提交
85
  int dim = layerHeight * layerWidth * numPriors_ * 4;
Y
yuan 已提交
86 87 88
  reserveOutput(1, dim * 2);
  // use a cpu buffer to compute
  Matrix::resizeOrCreate(buffer_, 1, dim * 2, false, false);
G
gaoyuan 已提交
89
  auto* tmpPtr = buffer_->getData();
Y
yuan 已提交
90 91

  int idx = 0;
G
gaoyuan 已提交
92 93
  for (int h = 0; h < layerHeight; ++h) {
    for (int w = 0; w < layerWidth; ++w) {
G
gaoyuan 已提交
94 95
      real centerX = (w + 0.5) * stepW;
      real centerY = (h + 0.5) * stepH;
G
gaoyuan 已提交
96
      int minSize = 0;
Y
yuan 已提交
97 98
      for (size_t s = 0; s < minSize_.size(); s++) {
        // first prior.
G
gaoyuan 已提交
99 100 101
        minSize = minSize_[s];
        int boxWidth = minSize;
        int boxHeight = minSize;
Y
yuan 已提交
102
        // xmin, ymin, xmax, ymax.
G
gaoyuan 已提交
103 104 105 106
        tmpPtr[idx++] = (centerX - boxWidth / 2.) / imageWidth;
        tmpPtr[idx++] = (centerY - boxHeight / 2.) / imageHeight;
        tmpPtr[idx++] = (centerX + boxWidth / 2.) / imageWidth;
        tmpPtr[idx++] = (centerY + boxHeight / 2.) / imageHeight;
G
gaoyuan 已提交
107 108
        // set the variance.
        for (int t = 0; t < 4; t++) tmpPtr[idx++] = variance_[t];
Y
yuan 已提交
109 110 111 112 113

        if (maxSize_.size() > 0) {
          CHECK_EQ(minSize_.size(), maxSize_.size());
          // second prior.
          for (size_t s = 0; s < maxSize_.size(); s++) {
G
gaoyuan 已提交
114 115 116 117 118 119
            int maxSize = maxSize_[s];
            boxWidth = boxHeight = sqrt(minSize * maxSize);
            tmpPtr[idx++] = (centerX - boxWidth / 2.) / imageWidth;
            tmpPtr[idx++] = (centerY - boxHeight / 2.) / imageHeight;
            tmpPtr[idx++] = (centerX + boxWidth / 2.) / imageWidth;
            tmpPtr[idx++] = (centerY + boxHeight / 2.) / imageHeight;
G
gaoyuan 已提交
120 121
            // set the variance.
            for (int t = 0; t < 4; t++) tmpPtr[idx++] = variance_[t];
Y
yuan 已提交
122 123 124 125 126
          }
        }
      }
      // rest of priors.
      for (size_t r = 0; r < aspectRatio_.size(); r++) {
G
gaoyuan 已提交
127
        real ar = aspectRatio_[r];
G
gaoyuan 已提交
128
        if (fabs(ar - 1.) < 1e-6) continue;
G
gaoyuan 已提交
129 130
        real boxWidth = minSize * sqrt(ar);
        real boxHeight = minSize / sqrt(ar);
G
gaoyuan 已提交
131 132 133 134
        tmpPtr[idx++] = (centerX - boxWidth / 2.) / imageWidth;
        tmpPtr[idx++] = (centerY - boxHeight / 2.) / imageHeight;
        tmpPtr[idx++] = (centerX + boxWidth / 2.) / imageWidth;
        tmpPtr[idx++] = (centerY + boxHeight / 2.) / imageHeight;
G
gaoyuan 已提交
135 136
        // set the variance.
        for (int t = 0; t < 4; t++) tmpPtr[idx++] = variance_[t];
Y
yuan 已提交
137 138 139 140
      }
    }
  }
  // clip the prior's coordidate such that it is within [0, 1]
G
gaoyuan 已提交
141 142
  for (int d = 0; d < dim * 2; ++d)
    if ((d % 8) < 4)
G
gaoyuan 已提交
143
      tmpPtr[d] = std::min(std::max(tmpPtr[d], (real)0.), (real)1.);
Y
yuan 已提交
144 145 146 147 148 149
  MatrixPtr outV = getOutputValue();
  outV->copyFrom(buffer_->data_, dim * 2);
}
REGISTER_LAYER(priorbox, PriorBoxLayer);

}  // namespace paddle