softmax_op.cc 8.3 KB
Newer Older
1
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserved.
2

Q
Qiao Longfei 已提交
3 4 5
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
6

Q
Qiao Longfei 已提交
7 8 9 10 11 12 13
    http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
14

Y
Yi Wang 已提交
15
#include "paddle/fluid/operators/softmax_op.h"
16

L
liuwei1031 已提交
17
#include <memory>
18
#include <string>
L
liuwei1031 已提交
19
#include <unordered_map>
20

K
Kexin Zhao 已提交
21 22 23
#ifdef PADDLE_WITH_CUDA
#include "paddle/fluid/platform/cudnn_helper.h"
#endif
24

25 26 27
#ifdef PADDLE_WITH_MKLDNN
#include "paddle/fluid/platform/mkldnn_helper.h"
#endif
28

29 30 31
namespace paddle {
namespace operators {

D
dongzhihong 已提交
32
class SoftmaxOp : public framework::OperatorWithKernel {
Y
Yu Yang 已提交
33 34 35
 public:
  using framework::OperatorWithKernel::OperatorWithKernel;

36
  void InferShape(framework::InferShapeContext* ctx) const override {
Q
Qiao Longfei 已提交
37 38
    PADDLE_ENFORCE(ctx->HasInput("X"),
                   "Input(X) of SoftmaxOp should not be null.");
F
fengjiayi 已提交
39 40
    PADDLE_ENFORCE(ctx->HasOutput("Out"),
                   "Output(Out) of SoftmaxOp should not be null.");
Q
Qiao Longfei 已提交
41

F
fengjiayi 已提交
42
    ctx->SetOutputDim("Out", ctx->GetInputDim("X"));
Q
Qiao Longfei 已提交
43
    ctx->ShareLoD("X", /*->*/ "Out");
44
  }
45 46 47 48 49

 protected:
  framework::OpKernelType GetExpectedKernelType(
      const framework::ExecutionContext& ctx) const override {
    // choose cudnn kernel if the runtime supported.
K
Kexin Zhao 已提交
50
    framework::LibraryType library_{framework::LibraryType::kPlain};
M
mozga-intel 已提交
51 52 53
    std::string data_format = ctx.Attr<std::string>("data_format");
    framework::DataLayout layout_ = framework::StringToDataLayout(data_format);

54
#ifdef PADDLE_WITH_CUDA
K
Kexin Zhao 已提交
55
    if (platform::CanCUDNNBeUsed(ctx)) {
K
Kexin Zhao 已提交
56
      library_ = framework::LibraryType::kCUDNN;
57 58
    }
#endif
59 60 61 62
#ifdef PADDLE_WITH_MKLDNN
    if (library_ == framework::LibraryType::kPlain &&
        platform::CanMKLDNNBeUsed(ctx)) {
      library_ = framework::LibraryType::kMKLDNN;
M
mozga-intel 已提交
63
      layout_ = framework::DataLayout::kMKLDNN;
64 65
    }
#endif
K
Kexin Zhao 已提交
66

Y
Yu Yang 已提交
67
    auto input_data_type = ctx.Input<Tensor>("X")->type();
K
Kexin Zhao 已提交
68
    if (input_data_type == framework::proto::VarType::FP16) {
69 70
      PADDLE_ENFORCE(platform::is_gpu_place(ctx.GetPlace()),
                     "float16 can only be used on GPU place");
K
Kexin Zhao 已提交
71 72
    }

M
mozga-intel 已提交
73
    return framework::OpKernelType(input_data_type, ctx.GetPlace(), layout_,
K
Kexin Zhao 已提交
74
                                   library_);
75
  }
76
};
77

D
dongzhihong 已提交
78
class SoftmaxOpMaker : public framework::OpProtoAndCheckerMaker {
79
 public:
Y
Yu Yang 已提交
80
  void Make() override {
81
    AddInput("X",
F
fengjiayi 已提交
82 83
             "The input tensor of softmax, "
             "whose last dimension is the input_feature_dimensions.");
84
    AddOutput("Out", "The normalized values with the same shape as X.");
85 86 87 88 89 90 91 92 93 94 95
    AddAttr<bool>(
        "use_cudnn",
        "(bool, default false) Only used in cudnn kernel, need install cudnn")
        .SetDefault(false);
    AddAttr<std::string>(
        "data_format",
        "(string, default NCHW) Only used in "
        "An optional string from: \"NHWC\", \"NCHW\". "
        "Defaults to \"NHWC\". Specify the data format of the output data, "
        "the input will be transformed automatically. ")
        .SetDefault("AnyLayout");
96 97 98
    AddAttr<bool>("use_mkldnn",
                  "(bool, default false) Only used in mkldnn kernel")
        .SetDefault(false);
J
Jacek Czaja 已提交
99
    AddAttr<bool>("is_test",
100 101
                  "(bool, default false) Set to true for inference only, false "
                  "for training. Some layers may run faster when this is true.")
J
Jacek Czaja 已提交
102
        .SetDefault(false);
C
caoying03 已提交
103
    AddComment(R"DOC(
104 105
Softmax Operator.

106
The input of the softmax operator is a tensor of any rank. The output tensor
F
fengjiayi 已提交
107
has the same shape as the input.
C
caoying03 已提交
108

109 110 111 112 113 114
The input tensor will first be logically flattened to a 2-D matrix. The matrix's
second dimension(row length) is as same as the last dimension of the input
tensor, and the first dimension(column length) is the product of all other
dimensions of the input tensor. For each row of the matrix, the softmax operator
squashes the K-dimensional(K is the width of the matrix, which is also the size
of the input tensor's last dimension) vector of arbitrary real values to a
F
fengjiayi 已提交
115
K-dimensional vector of real values in the range [0, 1] that add up to 1.
116 117 118 119 120
It computes the exponential of the given dimension and the sum of exponential
values of all the other dimensions in the K-dimensional vector input.
Then the ratio of the exponential of the given dimension and the sum of
exponential values of all the other dimensions is the output of the softmax
operator.
C
caoying03 已提交
121

F
fengjiayi 已提交
122
For each row $i$ and each column $j$ in the matrix, we have:
F
fengjiayi 已提交
123
    $$Out[i, j] = \frac{\exp(X[i, j])}{\sum_j(exp(X[i, j])}$$
C
caoying03 已提交
124 125

)DOC");
126 127 128
  }
};

C
chengduo 已提交
129 130 131 132 133 134 135 136
class SoftmaxOpInferVarType : public framework::PassInDtypeAndVarTypeToOutput {
 protected:
  std::unordered_map<std::string, std::string> GetInputOutputWithSameType()
      const override {
    return std::unordered_map<std::string, std::string>{{"X", /*->*/ "Out"}};
  }
};

D
dongzhihong 已提交
137
class SoftmaxOpGrad : public framework::OperatorWithKernel {
Y
Yu Yang 已提交
138 139 140
 public:
  using framework::OperatorWithKernel::OperatorWithKernel;

141
  void InferShape(framework::InferShapeContext* ctx) const override {
F
fengjiayi 已提交
142 143 144 145 146 147
    PADDLE_ENFORCE(ctx->HasInput("Out"), "Input(Out) should be not null.");
    PADDLE_ENFORCE(ctx->HasInput(framework::GradVarName("Out")),
                   "Input(Out@GRAD) should be not null.");
    PADDLE_ENFORCE_EQ(ctx->GetInputDim("Out"),
                      ctx->GetInputDim(framework::GradVarName("Out")),
                      "Input(Out) and its gradients should have a same shape.");
148

149 150
    ctx->SetOutputDim(framework::GradVarName("X"),
                      ctx->GetInputDim(framework::GradVarName("Out")));
D
dongzhihong 已提交
151
  }
152 153 154 155 156

 protected:
  framework::OpKernelType GetExpectedKernelType(
      const framework::ExecutionContext& ctx) const override {
    // choose cudnn kernel if the runtime supported.
K
Kexin Zhao 已提交
157
    framework::LibraryType library_{framework::LibraryType::kPlain};
J
Jacek Czaja 已提交
158 159
    std::string data_format = ctx.Attr<std::string>("data_format");
    framework::DataLayout layout_ = framework::StringToDataLayout(data_format);
M
mozga-intel 已提交
160

161
#ifdef PADDLE_WITH_CUDA
K
Kexin Zhao 已提交
162
    if (platform::CanCUDNNBeUsed(ctx)) {
K
Kexin Zhao 已提交
163
      library_ = framework::LibraryType::kCUDNN;
164 165
    }
#endif
J
Jacek Czaja 已提交
166 167 168 169 170 171 172
#ifdef PADDLE_WITH_MKLDNN
    if (library_ == framework::LibraryType::kPlain &&
        platform::CanMKLDNNBeUsed(ctx)) {
      library_ = framework::LibraryType::kMKLDNN;
      layout_ = framework::DataLayout::kMKLDNN;
    }
#endif
Y
Yu Yang 已提交
173 174
    auto input_data_type =
        ctx.Input<Tensor>(framework::GradVarName("Out"))->type();
J
Jacek Czaja 已提交
175 176 177 178 179 180 181
    if (input_data_type == framework::proto::VarType::FP16) {
      PADDLE_ENFORCE(platform::is_gpu_place(ctx.GetPlace()),
                     "float16 can only be used on GPU place");
    }

    return framework::OpKernelType(input_data_type, ctx.GetPlace(), layout_,
                                   library_);
182
  }
D
dongzhihong 已提交
183 184
};

185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202
class SoftmaxOpGradMaker : public framework::SingleGradOpDescMaker {
 public:
  using framework::SingleGradOpDescMaker::SingleGradOpDescMaker;

 protected:
  std::unique_ptr<framework::OpDesc> Apply() const override {
    auto* op = new framework::OpDesc();
    op->SetType("softmax_grad");

    op->SetInput("Out", Output("Out"));
    op->SetInput(framework::GradVarName("Out"), OutputGrad("Out"));

    op->SetAttrMap(Attrs());

    op->SetOutput(framework::GradVarName("X"), InputGrad("X"));
    return std::unique_ptr<framework::OpDesc>(op);
  }
};
D
dzhwinter 已提交
203

L
liuwei1031 已提交
204
class SoftmaxInplaceInToOut : public framework::InplaceOpInference {
D
dzhwinter 已提交
205
 public:
L
liuwei1031 已提交
206 207
  std::unordered_map<std::string, std::string> operator()(
      const framework::OpDesc& op_desc) const override {
D
dzhwinter 已提交
208 209 210 211 212 213
    return std::unordered_map<std::string, std::string>{
        {"X", "Out"},
    };
  }
};

214 215 216
}  // namespace operators
}  // namespace paddle

D
dongzhihong 已提交
217
namespace ops = paddle::operators;
D
dongzhihong 已提交
218

Y
Yang Yang 已提交
219
REGISTER_OPERATOR(softmax, ops::SoftmaxOp, ops::SoftmaxOpMaker,
C
chengduo 已提交
220
                  ops::SoftmaxOpInferVarType, ops::SoftmaxOpGradMaker);
221
REGISTER_OPERATOR(softmax_grad, ops::SoftmaxOpGrad);
D
dongzhihong 已提交
222
REGISTER_OP_CPU_KERNEL(
D
dzhwinter 已提交
223 224
    softmax, ops::SoftmaxKernel<paddle::platform::CPUDeviceContext, float>,
    ops::SoftmaxKernel<paddle::platform::CPUDeviceContext, double>);
Q
QI JUN 已提交
225 226
REGISTER_OP_CPU_KERNEL(
    softmax_grad,
D
dzhwinter 已提交
227 228
    ops::SoftmaxGradKernel<paddle::platform::CPUDeviceContext, float>,
    ops::SoftmaxGradKernel<paddle::platform::CPUDeviceContext, double>);