selu_op.cc 4.9 KB
Newer Older
C
chengduo 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
/* Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

    http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */

#include "paddle/fluid/operators/selu_op.h"
16
#include <memory>
C
chengduo 已提交
17
#include <string>
18
#include <unordered_map>
C
chengduo 已提交
19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43

namespace paddle {
namespace operators {

class SeluOp : public framework::OperatorWithKernel {
 public:
  SeluOp(const std::string &type, const framework::VariableNameMap &inputs,
         const framework::VariableNameMap &outputs,
         const framework::AttributeMap &attrs)
      : OperatorWithKernel(type, inputs, outputs, attrs) {}

  void InferShape(framework::InferShapeContext *ctx) const override {
    PADDLE_ENFORCE(ctx->HasInput("X"),
                   "Input(X) of SeluOp should not be null.");
    PADDLE_ENFORCE(ctx->HasOutput("Out"),
                   "Output(Out) of SeluOp should not be null.");

    ctx->ShareDim("X", /*->*/ "Out");
    ctx->ShareLoD("X", /*->*/ "Out");
  }

 protected:
  framework::OpKernelType GetExpectedKernelType(
      const framework::ExecutionContext &ctx) const override {
    return framework::OpKernelType(
44
        OperatorWithKernel::IndicateVarDataType(ctx, "X"), ctx.GetPlace());
C
chengduo 已提交
45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88
  }
};

class SeluOpInferVarType : public framework::PassInDtypeAndVarTypeToOutput {
 protected:
  std::unordered_map<std::string, std::string> GetInputOutputWithSameType()
      const override {
    return std::unordered_map<std::string, std::string>{{"X", /*->*/ "Out"}};
  }
};

class SeluOpMaker : public framework::OpProtoAndCheckerMaker {
 public:
  void Make() override {
    AddInput("X", "The input tensor of selu operator.");
    AddOutput("Out", "The output tensor of selu operator.");
    AddAttr<float>("scale",
                   "(float) the default value is 1.0507~. For more "
                   "information about this value, please refer to:"
                   "https://arxiv.org/abs/1706.02515.")
        .SetDefault(1.0507009873554804934193349852946);
    AddAttr<float>("alpha",
                   "(float) the default value is 1.6732~. For more "
                   "information about this value, please refer to:"
                   "https://arxiv.org/abs/1706.02515.")
        .SetDefault(1.6732632423543772848170429916717);
    AddComment(R"DOC(
Selu Operator.

The equation is:
$$
f(x) =\lambda*
\begin{cases}
 \quad \quad   x,  \quad \quad \quad \text{if} \ x > 0 \\
 \alpha * e^x - \alpha,  \qquad  \text{if} \ x <= 0
\end{cases}
$$

The input `X` can carry the LoD (Level of Details) information,
or not. And the output shares the LoD information with input `X`.
)DOC");
  }
};

H
hong 已提交
89 90
template <typename T>
class SeluGradMaker : public framework::SingleGradOpMaker<T> {
C
chengduo 已提交
91
 public:
H
hong 已提交
92
  using framework::SingleGradOpMaker<T>::SingleGradOpMaker;
C
chengduo 已提交
93

H
hong 已提交
94 95
  std::unique_ptr<T> Apply() const override {
    auto *grad_op = new T();
C
chengduo 已提交
96
    grad_op->SetType("selu_grad");
H
hong 已提交
97 98 99
    grad_op->SetInput("Out", this->Output("Out"));
    grad_op->SetInput(framework::GradVarName("Out"), this->OutputGrad("Out"));
    grad_op->SetOutput(framework::GradVarName("X"), this->InputGrad("X"));
C
chengduo 已提交
100
    grad_op->SetAttrMap(this->Attrs());
H
hong 已提交
101
    return std::unique_ptr<T>(grad_op);
C
chengduo 已提交
102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120
  }
};

class SeluGradOp : public framework::OperatorWithKernel {
 public:
  using framework::OperatorWithKernel::OperatorWithKernel;

  void InferShape(framework::InferShapeContext *ctx) const override {
    PADDLE_ENFORCE(ctx->HasInput(framework::GradVarName("Out")),
                   "Input(Out@GRAD) should not be null");
    PADDLE_ENFORCE(ctx->HasInput("Out"), "Input(Out) should not be null");
    auto x_grad_name = framework::GradVarName("X");
    ctx->SetOutputDim(x_grad_name, ctx->GetInputDim("Out"));
  }

 protected:
  framework::OpKernelType GetExpectedKernelType(
      const framework::ExecutionContext &ctx) const override {
    return framework::OpKernelType(
121
        OperatorWithKernel::IndicateVarDataType(ctx, "Out"), ctx.GetPlace());
C
chengduo 已提交
122 123 124 125 126 127 128 129 130
  }
};

}  // namespace operators
}  // namespace paddle

namespace ops = paddle::operators;

REGISTER_OPERATOR(selu, ops::SeluOp, ops::SeluOpMaker, ops::SeluOpInferVarType,
H
hong 已提交
131 132
                  ops::SeluGradMaker<paddle::framework::OpDesc>,
                  ops::SeluGradMaker<paddle::imperative::OpBase>);
C
chengduo 已提交
133 134 135 136 137 138 139
REGISTER_OPERATOR(selu_grad, ops::SeluGradOp);
REGISTER_OP_CPU_KERNEL(
    selu, ops::SeluKernel<paddle::platform::CPUDeviceContext, float>,
    ops::SeluKernel<paddle::platform::CPUDeviceContext, double>);
REGISTER_OP_CPU_KERNEL(
    selu_grad, ops::SeluGradKernel<paddle::platform::CPUDeviceContext, float>,
    ops::SeluGradKernel<paddle::platform::CPUDeviceContext, double>);