hinge_loss_op.cc 4.7 KB
Newer Older
1
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserved.
S
Siddharth Goyal 已提交
2 3 4 5 6 7 8 9 10 11 12 13 14

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

    http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */

Y
Yi Wang 已提交
15
#include "paddle/fluid/operators/hinge_loss_op.h"
16 17 18
#include <memory>
#include <string>
#include <vector>
S
Siddharth Goyal 已提交
19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51

namespace paddle {
namespace operators {

class HingeLossOp : public framework::OperatorWithKernel {
 public:
  using framework::OperatorWithKernel::OperatorWithKernel;

  void InferShape(framework::InferShapeContext* ctx) const override {
    PADDLE_ENFORCE(ctx->HasInput("Logits"),
                   "Input(Logits) must be initialized.");
    PADDLE_ENFORCE(ctx->HasInput("Labels"),
                   "Input(Labels) must be initialized.");

    auto pred_dims = ctx->GetInputDim("Logits");
    auto label_dims = ctx->GetInputDim("Labels");

    PADDLE_ENFORCE_EQ(pred_dims, label_dims);
    PADDLE_ENFORCE_EQ(pred_dims.size(), 2,
                      "The rank of Input(Logits) must be 2 and the shape is "
                      "[batch_size, 1].");
    PADDLE_ENFORCE_EQ(pred_dims[1], 1,
                      "Each row of Input(Logits) contains a real value, "
                      "so the 2nd dimension of Input(Logits) must be 1.");

    ctx->SetOutputDim("Loss", {pred_dims[0], 1});
    ctx->ShareLoD("Logits", "Loss");
  }
};

template <typename AttrType>
class HingeLossOpMaker : public framework::OpProtoAndCheckerMaker {
 public:
Y
Yu Yang 已提交
52
  void Make() override {
S
Siddharth Goyal 已提交
53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102
    AddInput("Logits",
             "The input value (Logits) of Hinge loss op."
             "Logits is a 2-D tensor with shape [batch_size, 1].");
    AddInput("Labels",
             "The target value (Labels) of Hinge loss op."
             "Labels is a 2-D tensor with shape [batch_size, 1].");
    AddOutput("Loss",
              "The output tensor with shape [batch_size, 1] "
              "which represents the hinge loss.");
    AddComment(R"DOC(
HingeLoss Operator.

Let x be a logit (prediction) and y be the actual label. The logit can
take any values from (-inf, inf), but the labels should be either -1 or 1.
Then, the hinge loss is computed as follows:

$$
L_(x, y) = max(1 - y.x, 0) 
$$

Note that the labels passed as input will have values as either 0 or 1.

)DOC");
  }
};

class HingeLossGradOp : public framework::OperatorWithKernel {
 public:
  using framework::OperatorWithKernel::OperatorWithKernel;

  void InferShape(framework::InferShapeContext* ctx) const override {
    PADDLE_ENFORCE(ctx->HasInput("Logits"),
                   "Input(Logits) should not be null.");
    PADDLE_ENFORCE(ctx->HasInput("Labels"),
                   "Input(Labels) should not be null.");
    PADDLE_ENFORCE(ctx->HasInput(framework::GradVarName("Loss")),
                   "Input(Loss@GRAD) should not be null.");
    PADDLE_ENFORCE(ctx->HasOutput(framework::GradVarName("Logits")),
                   "Input(Logits@GRAD) should not be null.");

    auto pred_dims = ctx->GetInputDim("Logits");
    auto loss_grad_dims = ctx->GetInputDim(framework::GradVarName("Loss"));

    PADDLE_ENFORCE_EQ(loss_grad_dims, pred_dims);

    auto pred_grad_name = framework::GradVarName("Logits");
    ctx->SetOutputDim(pred_grad_name, pred_dims);
  }
};

H
hong 已提交
103 104
template <typename T>
class HingeLossGradOpMaker : public framework::SingleGradOpMaker<T> {
105
 public:
H
hong 已提交
106
  using framework::SingleGradOpMaker<T>::SingleGradOpMaker;
107 108

 protected:
H
hong 已提交
109 110
  std::unique_ptr<T> Apply() const override {
    std::unique_ptr<T> op(new T());
111
    op->SetType("hinge_loss_grad");
H
hong 已提交
112 113 114 115 116
    op->SetInput("Logits", this->Input("Logits"));
    op->SetInput("Labels", this->Input("Labels"));
    op->SetInput(framework::GradVarName("Loss"), this->OutputGrad("Loss"));
    op->SetOutput(framework::GradVarName("Logits"), this->InputGrad("Logits"));
    op->SetAttrMap(this->Attrs());
117 118 119 120
    return op;
  }
};

S
Siddharth Goyal 已提交
121 122 123 124
}  // namespace operators
}  // namespace paddle

namespace ops = paddle::operators;
Y
Yang Yang 已提交
125
REGISTER_OPERATOR(hinge_loss, ops::HingeLossOp, ops::HingeLossOpMaker<float>,
H
hong 已提交
126 127
                  ops::HingeLossGradOpMaker<paddle::framework::OpDesc>,
                  ops::HingeLossGradOpMaker<paddle::imperative::OpBase>);
128
REGISTER_OPERATOR(hinge_loss_grad, ops::HingeLossGradOp);
Q
QI JUN 已提交
129 130 131
REGISTER_OP_CPU_KERNEL(
    hinge_loss,
    ops::HingeLossKernel<paddle::platform::CPUDeviceContext, float>);
S
Siddharth Goyal 已提交
132 133
REGISTER_OP_CPU_KERNEL(
    hinge_loss_grad,
Q
QI JUN 已提交
134
    ops::HingeLossGradKernel<paddle::platform::CPUDeviceContext, float>);