elementwise_op.h 18.0 KB
Newer Older
1
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserved.
G
gongweibao 已提交
2

3 4 5
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
G
gongweibao 已提交
6

7
    http://www.apache.org/licenses/LICENSE-2.0
G
gongweibao 已提交
8

9 10 11 12 13
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
G
gongweibao 已提交
14 15

#pragma once
C
chengduo 已提交
16

L
liuwei1031 已提交
17
#include <memory>
18
#include <string>
L
liuwei1031 已提交
19
#include <unordered_map>
20
#include "paddle/fluid/framework/data_layout.h"
Y
Yi Wang 已提交
21 22
#include "paddle/fluid/framework/op_registry.h"
#include "paddle/fluid/framework/operator.h"
C
chengduo 已提交
23

24 25 26
#ifdef PADDLE_WITH_MKLDNN
#include "paddle/fluid/platform/mkldnn_helper.h"
#endif
G
gongweibao 已提交
27 28 29 30 31 32 33 34 35

namespace paddle {
namespace operators {

class ElementwiseOp : public framework::OperatorWithKernel {
 public:
  using framework::OperatorWithKernel::OperatorWithKernel;

  using Tensor = framework::Tensor;
C
chengduo 已提交
36 37

  void InferShape(framework::InferShapeContext *ctx) const override {
Q
Qiao Longfei 已提交
38
    PADDLE_ENFORCE(ctx->HasInput("X"),
C
caoying03 已提交
39
                   "Input(X) of elementwise op should not be null.");
Q
Qiao Longfei 已提交
40
    PADDLE_ENFORCE(ctx->HasInput("Y"),
C
caoying03 已提交
41
                   "Input(Y) of elementwise op should not be null.");
Q
Qiao Longfei 已提交
42 43 44
    PADDLE_ENFORCE(ctx->HasOutput("Out"),
                   "Output(Out) of elementwise op should not be null.");

C
chengduo 已提交
45 46 47
    PADDLE_ENFORCE(
        ctx->GetInputsVarType("Y").front() ==
            framework::proto::VarType::LOD_TENSOR,
C
chengduo 已提交
48 49 50 51 52 53 54
        "The input var's type should be LoDTensor, but the received is %s [%s]",
        ctx->GetInputsVarType("Y").front(), ctx->Inputs("Y").front());

    if (ctx->GetInputsVarType("X").front() ==
        framework::proto::VarType::LOD_TENSOR) {
      auto x_dim = ctx->GetInputDim("X");
      auto y_dim = ctx->GetInputDim("Y");
55 56 57 58 59 60 61
      PADDLE_ENFORCE_GE(
          x_dim.size(), y_dim.size(),
          "ShapeError: the dimension of input X must greater than or equal to "
          "the one of input Y. But received: the shape of input X = [%s], the "
          "dimension of input X = %d, the shape of input Y = [%s], the "
          "dimension of input Y = %d",
          x_dim, x_dim.size(), y_dim, y_dim.size());
C
chengduo 已提交
62 63
    } else if (ctx->GetInputsVarType("X").front() ==
               framework::proto::VarType::SELECTED_ROWS) {
64 65 66 67 68 69 70 71 72 73
      PADDLE_ENFORCE_EQ(
          ctx->GetInputDim("Y").size(), 1u,
          "ShapeError: For elementwise_op, if X is Sparse(VarType.SELECTED_ROWS"
          "), Y must be scalar. But reveived the dimension of Y = %s",
          ctx->GetInputDim("Y").size());
      PADDLE_ENFORCE_EQ(
          ctx->GetInputDim("Y")[0], 1,
          "ShapeError: For elementwise_op, if X is Sparse(VarType.SELECTED_ROWS"
          "), Y must be scalar. But reveived the first dimension of Y = %s",
          ctx->GetInputDim("Y")[0]);
C
chengduo 已提交
74 75 76 77
    } else {
      PADDLE_THROW("X's type[%s] is not supported by elementwise_op.",
                   ctx->GetInputsVarType("X").front());
    }
78 79

    ctx->ShareDim("X", /*->*/ "Out");
Q
Qiao Longfei 已提交
80
    ctx->ShareLoD("X", /*->*/ "Out");
G
gongweibao 已提交
81
  }
82 83

  framework::OpKernelType GetExpectedKernelType(
C
chengduo 已提交
84
      const framework::ExecutionContext &ctx) const override {
85
    auto input_data_type = OperatorWithKernel::IndicateVarDataType(ctx, "X");
86 87 88 89 90 91 92 93 94 95

#ifdef PADDLE_WITH_MKLDNN
    if (platform::CanMKLDNNBeUsed(ctx)) {
      return framework::OpKernelType(input_data_type, ctx.GetPlace(),
                                     framework::DataLayout::kMKLDNN,
                                     framework::LibraryType::kMKLDNN);
    }
#endif
    return framework::OpKernelType(input_data_type, ctx.GetPlace());
  }
G
gongweibao 已提交
96 97
};

C
chengduo 已提交
98 99 100 101 102 103
class ElementwiseOpInferVarType
    : public framework::PassInDtypeAndVarTypeToOutput {
 protected:
  std::unordered_map<std::string, std::string> GetInputOutputWithSameType()
      const override {
    return std::unordered_map<std::string, std::string>{{"X", /*->*/ "Out"}};
104 105 106
  }
};

G
gongweibao 已提交
107 108
class ElementwiseOpMaker : public framework::OpProtoAndCheckerMaker {
 public:
Y
Yu Yang 已提交
109
  void Make() final {
110 111 112 113
    AddInputX();
    AddInputY();
    AddOpOutput();

G
gongweibao 已提交
114
    AddAttr<int>("axis",
115 116 117 118
                 "(int, default -1). If X.dimension != Y.dimension,"
                 "Y.dimension must be a subsequence of x.dimension. And axis "
                 "is the start dimension index "
                 "for broadcasting Y onto X. ")
G
gongweibao 已提交
119 120
        .SetDefault(-1)
        .EqualGreaterThan(-1);
121 122
    AddAttr<bool>("use_mkldnn", "(bool, default false). Used by MKLDNN.")
        .SetDefault(false);
123
    AddAttr<std::string>(
124 125 126 127 128 129
        "x_data_format",
        "(string, default NCHW) Only used in mkldnn"
        "An optional string from: \"NHWC\", \"NCHW\", \"NCHW16C\", \"NCHW8C\". "
        "Defaults to \"\". Specify the data format of the output data, "
        "the input will be transformed automatically. ")
        .SetDefault("");
130
    AddAttr<std::string>(
131 132 133 134 135 136
        "y_data_format",
        "(string, default \"\") Only used in mkldnn"
        "An optional string from: \"NHWC\", \"NCHW\", \"NCHW16C\", \"NCHW8C\". "
        "Defaults to \"\". Specify the data format of the output data, "
        "the input will be transformed automatically. ")
        .SetDefault("");
137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165

    AddOpComment();
  }

 protected:
  virtual void AddInputX() {
    AddInput("X", "(Tensor), The first input tensor of elementwise op.");
  }
  virtual void AddInputY() {
    AddInput("Y", "(Tensor), The second input tensor of elementwise op.");
  }
  virtual void AddOpOutput() {
    AddOutput("Out",
              "N-dimension tensor. A location into which the result is stored. "
              "It's dimension "
              "equals with x");
  }
  virtual void AddOpComment() { AddComment(GetCommentExamples()); }

  virtual std::string GetOpFuntionality() const { return ""; }

  virtual std::string GetName() const = 0;
  virtual std::string GetEquation() const = 0;

  std::string GetCommentExamples() const {
    return string::Sprintf(R"DOC(
Elementwise %s Operator.

%s
K
kexinzhao 已提交
166 167 168

The equation is:

Y
Yu Yang 已提交
169
$$%s$$
K
kexinzhao 已提交
170

171
- $X$: a tensor of any dimension.
L
Luo Tao 已提交
172
- $Y$: a tensor whose dimensions must be less than or equal to the dimensions of $X$.
K
kexinzhao 已提交
173 174

There are two cases for this operator:
175

L
Luo Tao 已提交
176 177
1. The shape of $Y$ is the same with $X$.
2. The shape of $Y$ is a continuous subsequence of $X$.
K
kexinzhao 已提交
178 179

For case 2:
180

181 182
1. Broadcast $Y$ to match the shape of $X$, where $axis$ is the start dimension index
   for broadcasting $Y$ onto $X$.
L
Luo Tao 已提交
183
2. If $axis$ is -1 (default), $axis = rank(X) - rank(Y)$.
184
3. The trailing dimensions of size 1 for $Y$ will be ignored for the consideration of
L
Luo Tao 已提交
185
   subsequence, such as shape(Y) = (2, 1) => (2).
K
kexinzhao 已提交
186

L
Luo Tao 已提交
187
For example:
188

G
gongweibao 已提交
189
  .. code-block:: text
G
gongweibao 已提交
190

191 192
    shape(X) = (2, 3, 4, 5), shape(Y) = (,)
    shape(X) = (2, 3, 4, 5), shape(Y) = (5,)
L
Luo Tao 已提交
193
    shape(X) = (2, 3, 4, 5), shape(Y) = (4, 5), with axis=-1(default) or axis=2
194 195
    shape(X) = (2, 3, 4, 5), shape(Y) = (3, 4), with axis=1
    shape(X) = (2, 3, 4, 5), shape(Y) = (2), with axis=0
196
    shape(X) = (2, 3, 4, 5), shape(Y) = (2, 1), with axis=0
197

Y
Yu Yang 已提交
198
)DOC",
199
                           GetName(), GetOpFuntionality(), GetEquation());
G
gongweibao 已提交
200 201 202 203 204 205 206 207
  }
};

class ElementwiseOpGrad : public framework::OperatorWithKernel {
 public:
  using framework::OperatorWithKernel::OperatorWithKernel;
  using Tensor = framework::Tensor;

C
chengduo 已提交
208
  void InferShape(framework::InferShapeContext *ctx) const override {
209
    auto out_grad_name = framework::GradVarName("Out");
Q
Qiao Longfei 已提交
210
    PADDLE_ENFORCE(ctx->HasInput("Y"), "Input(Y) should not be null");
211
    PADDLE_ENFORCE(ctx->HasInput(out_grad_name),
Q
Qiao Longfei 已提交
212 213
                   "Input(Out@GRAD) should not be null");

214
    auto x_dims = ctx->GetInputDim(out_grad_name);
Q
Qiao Longfei 已提交
215
    auto y_dims = ctx->GetInputDim("Y");
G
gongweibao 已提交
216

217 218 219 220 221 222 223
    PADDLE_ENFORCE_GE(
        x_dims.size(), y_dims.size(),
        "ShapeError: the dimension of Out@GRAD must greater than or equal to "
        "the one of input Y. But received: the shape of Out@GRAD = [%s], the "
        "dimension of Out@GRAD = %d, the shape of input Y = [%s], the "
        "dimension of of input Y = %d",
        x_dims, x_dims.size(), y_dims, y_dims.size());
G
gongweibao 已提交
224

Q
Qiao Longfei 已提交
225 226 227
    auto x_grad_name = framework::GradVarName("X");
    auto y_grad_name = framework::GradVarName("Y");
    if (ctx->HasOutput(x_grad_name)) {
228 229
      ctx->ShareDim(out_grad_name, /*->*/ x_grad_name);
      ctx->ShareLoD(out_grad_name, /*->*/ x_grad_name);
G
gongweibao 已提交
230
    }
Q
Qiao Longfei 已提交
231
    if (ctx->HasOutput(y_grad_name)) {
232 233
      ctx->ShareDim("Y", /*->*/ y_grad_name);
      ctx->ShareLoD("Y", /*->*/ y_grad_name);
G
gongweibao 已提交
234 235
    }
  }
236 237

  framework::OpKernelType GetExpectedKernelType(
C
chengduo 已提交
238
      const framework::ExecutionContext &ctx) const override {
239 240
    auto input_data_type = OperatorWithKernel::IndicateVarDataType(
        ctx, framework::GradVarName("Out"));
241 242 243 244 245 246 247 248 249 250

#ifdef PADDLE_WITH_MKLDNN
    if (platform::CanMKLDNNBeUsed(ctx)) {
      return framework::OpKernelType(input_data_type, ctx.GetPlace(),
                                     framework::DataLayout::kMKLDNN,
                                     framework::LibraryType::kMKLDNN);
    }
#endif
    return framework::OpKernelType(input_data_type, ctx.GetPlace());
  }
G
gongweibao 已提交
251
};
252

253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276
class ElementwiseOpDoubleGrad : public framework::OperatorWithKernel {
 public:
  using framework::OperatorWithKernel::OperatorWithKernel;
  using Tensor = framework::Tensor;

  void InferShape(framework::InferShapeContext *ctx) const override {
    auto x_grad_name = framework::GradVarName("X");
    auto y_grad_name = framework::GradVarName("Y");
    if (ctx->HasOutput(x_grad_name)) {
      ctx->ShareDim("X", x_grad_name);
      ctx->ShareLoD("X", x_grad_name);
    }
    if (ctx->HasOutput(y_grad_name)) {
      ctx->ShareDim("Y", y_grad_name);
      ctx->ShareLoD("Y", y_grad_name);
    }
    if (ctx->HasOutput("DDOut")) {
      ctx->ShareDim("DOut", "DDOut");
      ctx->ShareLoD("DOut", "DDOut");
    }
  }

  framework::OpKernelType GetExpectedKernelType(
      const framework::ExecutionContext &ctx) const override {
277
    auto input_data_type = OperatorWithKernel::IndicateVarDataType(ctx, "DOut");
278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304

#ifdef PADDLE_WITH_MKLDNN
    if (platform::CanMKLDNNBeUsed(ctx)) {
      return framework::OpKernelType(input_data_type, ctx.GetPlace(),
                                     framework::DataLayout::kMKLDNN,
                                     framework::LibraryType::kMKLDNN);
    }
#endif
    return framework::OpKernelType(input_data_type, ctx.GetPlace());
  }
};

class ElementwiseOpDoubleGradWithoutDXDY
    : public framework::OperatorWithKernel {
 public:
  using framework::OperatorWithKernel::OperatorWithKernel;
  using Tensor = framework::Tensor;

  void InferShape(framework::InferShapeContext *ctx) const override {
    if (ctx->HasOutput("DDOut")) {
      ctx->ShareDim("DOut", "DDOut");
      ctx->ShareLoD("DOut", "DDOut");
    }
  }

  framework::OpKernelType GetExpectedKernelType(
      const framework::ExecutionContext &ctx) const override {
305 306 307 308
    framework::proto::VarType::Type input_data_type;
    if (ctx.HasInput("DDX") == false) {
      PADDLE_ENFORCE_EQ(ctx.HasInput("DDY"), true,
                        "Input(DDY) should not be null");
309
      input_data_type = OperatorWithKernel::IndicateVarDataType(ctx, "DDY");
310 311 312
    } else if (ctx.HasInput("DDY") == false) {
      PADDLE_ENFORCE_EQ(ctx.HasInput("DDX"), true,
                        "Input(DDX) should not be null");
313
      input_data_type = OperatorWithKernel::IndicateVarDataType(ctx, "DDX");
314
    } else {
315
      input_data_type = OperatorWithKernel::IndicateVarDataType(ctx, "DDX");
316
    }
317 318 319 320 321 322 323 324 325 326 327 328

#ifdef PADDLE_WITH_MKLDNN
    if (platform::CanMKLDNNBeUsed(ctx)) {
      return framework::OpKernelType(input_data_type, ctx.GetPlace(),
                                     framework::DataLayout::kMKLDNN,
                                     framework::LibraryType::kMKLDNN);
    }
#endif
    return framework::OpKernelType(input_data_type, ctx.GetPlace());
  }
};

329 330 331 332 333 334 335
// For Add, Sub op, the X, Out is not needed.
class ElementwiseOpExplicitGrad : public ElementwiseOpGrad {
 public:
  using operators::ElementwiseOpGrad::ElementwiseOpGrad;
  using operators::ElementwiseOpGrad::GetExpectedKernelType;
  using Tensor = framework::Tensor;

C
chengduo 已提交
336
  void InferShape(framework::InferShapeContext *ctx) const override {
337 338 339 340 341
    PADDLE_ENFORCE(ctx->HasInput(framework::GradVarName("Out")),
                   "Input(Out@GRAD) should not be null");

    auto x_grad_name = framework::GradVarName("X");
    if (ctx->HasOutput(x_grad_name)) {
342 343
      ctx->ShareDim(framework::GradVarName("Out"), /*->*/ x_grad_name);
      ctx->ShareLoD(framework::GradVarName("Out"), /*->*/ x_grad_name);
344 345 346 347
    }
    auto y_grad_name = framework::GradVarName("Y");
    if (ctx->HasOutput(y_grad_name)) {
      PADDLE_ENFORCE(ctx->HasInput("Y"), "Input(Y) should not be null");
348 349 350

      ctx->ShareDim("Y", /*->*/ y_grad_name);
      ctx->ShareLoD("Y", /*->*/ y_grad_name);
351 352 353 354
    }
  }
};

355 356 357
template <typename T>
class ElemwiseGradKernel : public framework::OpKernel<T> {
 public:
C
chengduo 已提交
358 359
  void Compute(const framework::ExecutionContext &context) const override {
    auto *dx =
360 361
        context.Output<framework::LoDTensor>(framework::GradVarName("X"));
    if (dx != nullptr) {
C
chengduo 已提交
362
      auto &dout =
363 364 365 366 367 368
          *context.Input<framework::LoDTensor>(framework::GradVarName("Out"));
      dx->set_lod(dout.lod());
    }
  }
};

369 370 371 372
DECLARE_INPLACE_OP_INFERER(ElementwiseOpInplace, {"X", "Out"});
DECLARE_INPLACE_OP_INFERER(ElementwiseGradOpInplace,
                           {framework::GradVarName("Out"),
                            framework::GradVarName("X")});
373
DECLARE_INPLACE_OP_INFERER(ElementwiseDoubleGradOpInplace, {"DDX", "DDOut"});
D
dzhwinter 已提交
374

S
sneaxiy 已提交
375
DECLARE_NO_NEED_BUFFER_VARS_INFERENCE(ElementwiseGradNoBufVarsInference, "Y");
376 377
DECLARE_NO_NEED_BUFFER_VARS_INFERENCE(ElementwiseDoubleGradNoBufVarsInference,
                                      "Y", "DOut");
S
sneaxiy 已提交
378

G
gongweibao 已提交
379 380
}  // namespace operators
}  // namespace paddle
Y
Yu Yang 已提交
381

H
hong 已提交
382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402
#define REGISTER_ELEMWISE_GRAD_MAKER(kernel_type, op_name)              \
  template <typename T>                                                 \
  class kernel_type##GradMaker                                          \
      : public paddle::framework::SingleGradOpMaker<T> {                \
   public:                                                              \
    using ::paddle::framework::SingleGradOpMaker<T>::SingleGradOpMaker; \
                                                                        \
   protected:                                                           \
    std::unique_ptr<T> Apply() const override {                         \
      auto *op = new T();                                               \
      op->SetType(#kernel_type "_grad");                                \
      op->SetInput("Y", this->Input("Y"));                              \
      op->SetInput(::paddle::framework::GradVarName("Out"),             \
                   this->OutputGrad("Out"));                            \
      op->SetAttrMap(this->Attrs());                                    \
      op->SetOutput(::paddle::framework::GradVarName("X"),              \
                    this->InputGrad("X"));                              \
      op->SetOutput(::paddle::framework::GradVarName("Y"),              \
                    this->InputGrad("Y"));                              \
      return std::unique_ptr<T>(op);                                    \
    }                                                                   \
403 404
  }

H
hong 已提交
405 406 407 408 409 410 411 412 413 414 415 416 417 418 419
#define REGISTER_ELEMWISE_OP(op_type, op_name, equation)                    \
  class __ElemwiseOp##op_type##Maker__                                      \
      : public ::paddle::operators::ElementwiseOpMaker {                    \
   protected:                                                               \
    virtual std::string GetName() const { return op_name; }                 \
    virtual std::string GetEquation() const { return equation; }            \
  };                                                                        \
  REGISTER_OPERATOR(                                                        \
      op_type, ::paddle::operators::ElementwiseOp,                          \
      __ElemwiseOp##op_type##Maker__,                                       \
      ::paddle::operators::ElementwiseOpInferVarType,                       \
      ::paddle::framework::DefaultGradOpMaker<::paddle::framework::OpDesc,  \
                                              true>,                        \
      ::paddle::framework::DefaultGradOpMaker<::paddle::imperative::OpBase, \
                                              true>);                       \
Y
Yu Yang 已提交
420
  REGISTER_OPERATOR(op_type##_grad, ::paddle::operators::ElementwiseOpGrad)
421

H
hong 已提交
422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437
#define REGISTER_ELEMWISE_EXPLICIT_OP(op_type, op_name, equation)     \
  class __ElemwiseOp##op_type##Maker__                                \
      : public ::paddle::operators::ElementwiseOpMaker {              \
   protected:                                                         \
    virtual std::string GetName() const { return op_name; }           \
    virtual std::string GetEquation() const { return equation; }      \
  };                                                                  \
  REGISTER_OPERATOR(op_type, ::paddle::operators::ElementwiseOp,      \
                    __ElemwiseOp##op_type##Maker__,                   \
                    ::paddle::operators::ElementwiseOpInferVarType,   \
                    op_type##GradMaker<::paddle::framework::OpDesc>,  \
                    op_type##GradMaker<::paddle::imperative::OpBase>, \
                    ::paddle::operators::ElementwiseOpInplace);       \
  REGISTER_OPERATOR(op_type##_grad,                                   \
                    ::paddle::operators::ElementwiseOpExplicitGrad,   \
                    ::paddle::operators::ElementwiseGradOpInplace,    \
S
sneaxiy 已提交
438
                    ::paddle::operators::ElementwiseGradNoBufVarsInference)
439

440 441 442 443
#define REGISTER_ELEMWISE_EXPLICIT_OP_WITHOUT_GRAD(op_type, op_name)    \
  REGISTER_OPERATOR(op_type, ::paddle::operators::ElementwiseOp,        \
                    ::paddle::operators::Elementwise##op_name##OpMaker, \
                    ::paddle::operators::ElementwiseOpInferVarType,     \
H
hong 已提交
444 445
                    op_type##GradMaker<::paddle::framework::OpDesc>,    \
                    op_type##GradMaker<::paddle::imperative::OpBase>,   \
446
                    ::paddle::operators::ElementwiseOpInplace);