cudnn_lstm_op.cc 10.2 KB
Newer Older
P
phlrain 已提交
1
/* Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
L
liuhongyu 已提交
2 3 4 5 6 7 8 9 10 11 12 13 14

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */

S
sneaxiy 已提交
15
#include <memory>
L
liuhongyu 已提交
16
#include <string>
C
chengduozh 已提交
17
#include "paddle/fluid/framework/op_registry.h"
L
liuhongyu 已提交
18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47

namespace paddle {
namespace operators {

class CudnnLSTMOp : public framework::OperatorWithKernel {
 public:
  using framework::OperatorWithKernel::OperatorWithKernel;

  void InferShape(framework::InferShapeContext* ctx) const override {
    PADDLE_ENFORCE(ctx->HasInput("Input"),
                   "Input(Input) of LSTM should not be null.");
    PADDLE_ENFORCE(ctx->HasInput("W"),
                   "Input(Weight) of LSTM should not be null.");

    PADDLE_ENFORCE(ctx->HasInput("InitH"),
                   "Input(init_h) of LSTM should not be null.");
    PADDLE_ENFORCE(ctx->HasInput("InitC"),
                   "Input(init_c) of LSTM should not be null.");
    PADDLE_ENFORCE(ctx->HasInput("Cache"),
                   "Input(Cache) of LSTM should not be null.");
    PADDLE_ENFORCE(ctx->HasOutput("Out"),
                   "Output(Out) of LSTM should not be null.");
    PADDLE_ENFORCE(ctx->HasOutput("last_h"),
                   "Output(last_h) of LSTM should not be null.");
    PADDLE_ENFORCE(ctx->HasOutput("last_c"),
                   "Output(last_c) of LSTM should not be null.");

    auto in_dims = ctx->GetInputDim("Input");
    PADDLE_ENFORCE_EQ(in_dims.size(), 3, "Input(X)'s rank must be 3.");

48 49 50 51 52
    auto out_dims = in_dims;
    auto hidden_size = ctx->Attrs().Get<int>("hidden_size");
    out_dims[2] = hidden_size;

    ctx->SetOutputDim("Out", out_dims);
L
liuhongyu 已提交
53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129
    ctx->SetOutputDim("last_h", ctx->GetInputDim("InitH"));
    ctx->SetOutputDim("last_c", ctx->GetInputDim("InitC"));
  }
};

class CudnnLSTMOpMaker : public framework::OpProtoAndCheckerMaker {
 public:
  void Make() override {
    AddInput(
        "Input",
        "(Tensor) RNN input tensor, which support variable-time length input "
        "sequence."
        "The shape of the Tensor MUST be ( seq_len * batch_size * input_size)"
        "seq_len is the total time step in this mini-batch (CAN be change in "
        "different batch)"
        "batch_size is the instance number of this batch"
        "input_size is the hidden size of the input."
        "input_hidden_size and the hidden_size in the next may not be same");
    AddInput("InitH",
             "(Tensor) the initial hidden state of the LSTM"
             "input. This is a tensor with shape (num_layers x batch_size x "
             "hidden_size)"
             "and When is_bidirec is True, the shape will be (num_layers*2 x "
             "batch_size x hidden_size)");
    AddInput("InitC",
             "(Tensor) the initial cell state of the LSTm "
             "input. This is a tensor with shape (num_layers x batch_size x "
             "hidden_size)"
             "and When is_bidirec is True, the shape will be (num_layers*2 x "
             "batch_size x hidden_size)");
    AddInput("W",
             "(Tensor) the learnable hidden-hidden weights."
             " The shape is (N), where N is total weight size of the LSTM. "
             " cudnn concatenate all the weight to one Tensor");
    AddInput("Cache",
             "The cache of dropout op, a RAW type variable including random "
             "number generator states and some descriptors, which is used in "
             "cudnn kernel.")
        .AsDispensable();
    AddOutput("Out",
              "(Tensor) the hidden state of LSTM operator. "
              "The shape is ( seq_len x batch_size x hidden_size) if "
              "is_bidirec is False"
              "and When is_bidirec is True, the shape will be ( seq_len x "
              "batch_size x hidden_size * 2) ");
    AddOutput("last_h",
              "(Tensor) the hidden state of the last step. "
              "The shape is ( num_layers x batch_size x hidden_size) if "
              "is_bidirec is False"
              "and When is_bidirec is True, the shape will be (num_layers*2 x "
              "batch_size x hidden_size)");
    AddOutput("last_c",
              "(Tensor) the cell state of the last step"
              "The shape is ( num_layers x batch_size x hidden_size) if "
              "is_bidirec is False"
              "and When is_bidirect is True, the shape will be (num_layers*2 x "
              "batch_size x hidden_size*2)");
    AddAttr<int>("max_len",
                 "max length of the LSTM op"
                 "the first dim of the Input can NOT be greater than max_len")
        .SetDefault(20);
    AddAttr<float>(
        "dropout_prob",
        "dropout prob of the dropout op"
        "the dropout ONLY work between lstm layers, not between time steps"
        "There is no dropout work on the Out tensor")
        .SetDefault(0.0);
    AddAttr<bool>("is_bidirec",
                  "is_bidirec"
                  "if it is bidirection rnn"
                  "The will affect the shape of the Out, last_h, and last_c")
        .SetDefault(false);
    AddAttr<int>("input_size", "input size ot the Input Tensor").SetDefault(10);
    AddAttr<int>("hidden_size", "hidden size of the LSTM").SetDefault(100);
    AddAttr<int>("num_layers", "the total layer number of the LSTM")
        .SetDefault(1);
    AddAttr<bool>("is_test", "True if in test phase.").SetDefault(false);
P
phlrain 已提交
130
    AddAttr<int>("seed", "seed to used if fix_seed is True").SetDefault(-1);
L
liuhongyu 已提交
131 132 133 134 135 136 137
    AddComment(R"DOC(
CUDNN LSTM implementation

A four-gate Long Short-Term Memory network with no peephole connections.
In the forward pass the output ht and cell output ct for a given iteration can be computed from the recurrent input ht-1, 
the cell input ct-1 and the previous layer input xt given matrices W, R and biases bW, bR from the following equations:

P
phlrain 已提交
138
$$ i_t = sigmoid(W_{ix}x_{t} + W_{ih}h_{t-1} + bx_i + bh_i) $$
L
liuhongyu 已提交
139

P
phlrain 已提交
140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162
$$ f_t = sigmoid(W_{fx}x_{t} + W_{fh}h_{t-1} + bx_f + bh_f) $$

$$ o_t = sigmoid(W_{ox}x_{t} + W_{oh}h_{t-1} + bx_o + bh_o) $$

$$ \\tilde{c_t} = tanh(W_{cx}x_t + W_{ch}h_{t-1} + bx_c + bh_c) $$

$$ c_t = f_t \\odot c_{t-1} + i_t \\odot \\tilde{c_t} $$

$$ h_t = o_t \\odot tanh(c_t) $$

- W terms denote weight matrices (e.g. $W_{ix}$ is the matrix
  of weights from the input gate to the input)
- The b terms denote bias vectors ($bx_i$ and $bh_i$ are the input gate bias vector).
- sigmoid is the logistic sigmoid function.
- $i, f, o$ and $c$ are the input gate, forget gate, output gate,
  and cell activation vectors, respectively, all of which have the same size as
  the cell output activation vector $h$.
- The $\odot$ is the element-wise product of the vectors.
- `tanh` is the activation functions.
- $\tilde{c_t}$ is also called candidate hidden state,
  which is computed based on the current input and the previous hidden state.

Where sigmoid is the sigmoid operator: sigmoid(x) = 1 / (1 + e^-x), * represents a point-wise multiplication, 
L
liuhongyu 已提交
163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199
X represensts a matrix multiplication


)DOC");
  }
};

class CudnnLSTMGradOp : public framework::OperatorWithKernel {
 public:
  using framework::OperatorWithKernel::OperatorWithKernel;

  void InferShape(framework::InferShapeContext* ctx) const override {
    PADDLE_ENFORCE(ctx->HasInput("Input"),
                   "Input(Input) of LSTM should not be null.");
    PADDLE_ENFORCE(ctx->HasInput("W"), "Input(W) of LSTM should not be null.");
    PADDLE_ENFORCE(ctx->HasInput("Cache"),
                   "Input(last_c) of LSTM should not be null.");
    PADDLE_ENFORCE(ctx->HasInput("InitH"),
                   "Input(init_h) of LSTM should not be null.");

    PADDLE_ENFORCE(ctx->HasInput("InitC"),
                   "Input(init_c) of LSTM should not be null.");

    auto SetOutGradDim = [&ctx](const std::string& name) {
      auto g_name = framework::GradVarName(name);
      if (ctx->HasOutput(g_name)) {
        ctx->SetOutputDim(g_name, ctx->GetInputDim(name));
      }
    };

    SetOutGradDim("Input");
    SetOutGradDim("W");
    SetOutGradDim("InitH");
    SetOutGradDim("InitC");
  }
};

H
hong 已提交
200 201
template <typename T>
class CudnnLSTMGradOpMaker : public framework::SingleGradOpMaker<T> {
S
sneaxiy 已提交
202
 public:
H
hong 已提交
203
  using framework::SingleGradOpMaker<T>::SingleGradOpMaker;
S
sneaxiy 已提交
204 205

 protected:
H
hong 已提交
206 207
  std::unique_ptr<T> Apply() const override {
    std::unique_ptr<T> op(new T());
S
sneaxiy 已提交
208
    op->SetType("cudnn_lstm_grad");
H
hong 已提交
209 210 211 212 213 214
    op->SetInput("Input", this->Input("Input"));
    op->SetInput("InitH", this->Input("InitH"));
    op->SetInput("InitC", this->Input("InitC"));
    op->SetInput("W", this->Input("W"));
    if (this->HasInput("Cache")) {
      op->SetInput("Cache", this->Input("Cache"));
S
sneaxiy 已提交
215
    }
H
hong 已提交
216 217 218 219 220 221 222 223 224 225
    op->SetInput("Out", this->Output("Out"));
    op->SetInput(framework::GradVarName("Out"), this->OutputGrad("Out"));
    op->SetInput(framework::GradVarName("last_c"), this->OutputGrad("last_c"));
    op->SetInput(framework::GradVarName("last_h"), this->OutputGrad("last_h"));

    op->SetOutput(framework::GradVarName("Input"), this->InputGrad("Input"));
    op->SetOutput(framework::GradVarName("W"), this->InputGrad("W"));
    op->SetOutput(framework::GradVarName("InitH"), this->InputGrad("InitH"));
    op->SetOutput(framework::GradVarName("InitC"), this->InputGrad("InitC"));
    op->SetAttrMap(this->Attrs());
S
sneaxiy 已提交
226 227 228 229
    return op;
  }
};

C
chengduozh 已提交
230 231 232 233 234 235 236 237 238
template <typename T>
class NotImpleKernel : public framework::OpKernel<T> {
 public:
  void Compute(const framework::ExecutionContext& ctx) const override {
    PADDLE_THROW(
        "CPU is not support for this kernel now. Will be add in the future");
  }
};

L
liuhongyu 已提交
239 240 241 242
}  // namespace operators
}  // namespace paddle

namespace ops = paddle::operators;
C
chengduozh 已提交
243
REGISTER_OPERATOR(cudnn_lstm, ops::CudnnLSTMOp, ops::CudnnLSTMOpMaker,
H
hong 已提交
244 245
                  ops::CudnnLSTMGradOpMaker<paddle::framework::OpDesc>,
                  ops::CudnnLSTMGradOpMaker<paddle::imperative::OpBase>);
C
chengduozh 已提交
246
REGISTER_OPERATOR(cudnn_lstm_grad, ops::CudnnLSTMGradOp);
L
liuhongyu 已提交
247

C
chengduozh 已提交
248 249
REGISTER_OP_CPU_KERNEL(cudnn_lstm, ops::NotImpleKernel<float>);
REGISTER_OP_CPU_KERNEL(cudnn_lstm_grad, ops::NotImpleKernel<float>);