manipulation.cc 4.5 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
//   Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
//     http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.

#include "paddle/pten/kernels/xpu/manipulation.h"
C
Chen Weihang 已提交
16
#include "paddle/pten/infermeta/unary.h"
17
#include "paddle/pten/kernels/functions/general/manipulation.h"
18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49
#include "paddle/pten/kernels/xpu/utils.h"

namespace pten {

template <typename T>
void Flatten(const XPUContext& dev_ctx,
             const DenseTensor& x,
             int start_axis,
             int stop_axis,
             DenseTensor* out) {
  auto out_dims = out->dims();
  pten::Copy(dev_ctx, x, out);
  out->Resize(out_dims);
}

// TODO(yuanrisheng): this kernel is for training and xshape is a Intermediate
// Output Tensor,
// is there a more flexible way to deal with this case?
template <typename T>
void FlattenWithXShape(const XPUContext& dev_ctx,
                       const DenseTensor& x,
                       int start_axis,
                       int stop_axis,
                       DenseTensor* out,
                       DenseTensor* xshape) {
  Flatten<T>(dev_ctx, x, start_axis, stop_axis, out);
  const auto& in_dims = x.dims();
  std::vector<int64_t> xshape_dims(in_dims.size() + 1);
  xshape_dims[0] = 0;
  for (int i = 0; i < in_dims.size(); ++i) {
    xshape_dims[i + 1] = in_dims[i];
  }
50
  xshape->Resize(paddle::framework::make_ddim(xshape_dims), x.meta().lod);
51 52
}

53 54
void ReshapeFromVectorVal(const XPUContext& dev_ctx,
                          const DenseTensor& x,
55
                          const std::vector<int64_t>& shape,
56 57 58 59 60 61 62 63 64 65 66 67 68 69 70
                          DenseTensor* out) {
  auto out_meta = InferShapeFromVecValue(x.meta(), shape);
  if (&x == out) {
    out->Resize(out_meta.dims);
    return;
  }
  pten::Copy(dev_ctx, x, out);
  out->Resize(out_meta.dims);
}

void ReshapeFromDT(const XPUContext& dev_ctx,
                   const DenseTensor& x,
                   const DenseTensor& shape,
                   DenseTensor* out) {
  auto* shape_data = shape.data<int>();
71 72
  auto vector_shape =
      std::vector<int64_t>(shape_data, shape_data + shape.numel());
73 74 75 76 77 78 79
  ReshapeFromVectorVal(dev_ctx, x, vector_shape, out);
}

void ReshapeFromVectorDT(const XPUContext& dev_ctx,
                         const DenseTensor& x,
                         const std::vector<DenseTensor>& shape,
                         DenseTensor* out) {
80
  std::vector<int64_t> vector_shape;
81 82 83 84 85 86 87 88 89 90 91 92 93 94
  for (auto& tensor : shape) {
    PADDLE_ENFORCE_EQ(
        tensor.dims(),
        paddle::framework::make_ddim({1}),
        paddle::platform::errors::InvalidArgument(
            "If the element type of 'shape' in ReshapeOp is Tensor, "
            "the element's shape must be [1]. But received the element's shape "
            "is [%s]",
            tensor.dims()));
    vector_shape.push_back(*tensor.data<int32_t>());
  }
  ReshapeFromVectorVal(dev_ctx, x, vector_shape, out);
}

95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124
}  // namespace pten

// TODO(chenweihang): replace by better impl
PT_REGISTER_MODULE(ManipulationXPU);

// TODO(yuanrisheng): "flatten_contiguous_range" is compatible with old kernel
// architecture, kernel_name should be "flatten".
PT_REGISTER_KERNEL("flatten_contiguous_range",
                   XPU,
                   ANY,
                   pten::Flatten,
                   float,
                   paddle::platform::float16,
                   double,
                   uint8_t,
                   int8_t,
                   int,
                   int64_t) {}

PT_REGISTER_KERNEL("flatten_contiguous_range.mid",
                   XPU,
                   ANY,
                   pten::FlattenWithXShape,
                   float,
                   paddle::platform::float16,
                   double,
                   uint8_t,
                   int8_t,
                   int,
                   int64_t) {}
125 126 127 128 129 130 131

// TODO(yuanrisheng): "reshape2" is compatible with old kernel
// architecture, kernel_name should be "reshape".
PT_REGISTER_KERNEL_WITH_NO_TYPE("reshape2",
                                XPU,
                                ANY,
                                pten::ReshapeFromVectorVal) {}