pyreader.py 3.8 KB
Newer Older
Y
yuyang18 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38
# Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

import paddle.fluid as fluid
import paddle.dataset.mnist as mnist
import paddle
import threading
import numpy


def network(is_train):
    reader, queue = fluid.layers.py_reader(
        capacity=10,
        shapes=((-1, 784), (-1, 1)),
        dtypes=('float32', 'int64'),
        name="train_reader" if is_train else "test_reader")
    img, label = fluid.layers.read_file(fluid.layers.double_buffer(reader))

    hidden = img

    for i in xrange(2):
        hidden = fluid.layers.fc(input=hidden, size=100, act='tanh')
        hidden = fluid.layers.dropout(
            hidden, dropout_prob=0.5, is_test=not is_train)

    prediction = fluid.layers.fc(input=hidden, size=10, act='softmax')
    loss = fluid.layers.cross_entropy(input=prediction, label=label)
Y
yuyang18 已提交
39
    return fluid.layers.mean(loss), queue, reader
Y
yuyang18 已提交
40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72


def pipe_reader_to_queue(reader_creator, queue):
    with fluid.program_guard(fluid.Program(), fluid.Program()):
        feeder = fluid.DataFeeder(
            feed_list=[
                fluid.layers.data(
                    name='img', dtype='float32', shape=[784]),
                fluid.layers.data(
                    name='label', dtype='int64', shape=[1])
            ],
            place=fluid.CPUPlace())

    def __thread_main__():
        for data in feeder.decorate_reader(
                reader_creator, multi_devices=False)():
            tmp = fluid.core.LoDTensorArray()
            tmp.append(data['img'])
            tmp.append(data['label'])
            queue.push(tmp)
        queue.close()

    th = threading.Thread(target=__thread_main__)
    th.start()
    return th


def main():
    train_prog = fluid.Program()
    startup_prog = fluid.Program()

    with fluid.program_guard(train_prog, startup_prog):
        with fluid.unique_name.guard():
Y
yuyang18 已提交
73
            loss, train_queue, train_reader = network(True)
Y
yuyang18 已提交
74 75 76 77 78 79
            adam = fluid.optimizer.Adam(learning_rate=0.01)
            adam.minimize(loss)

    test_prog = fluid.Program()
    with fluid.program_guard(test_prog, fluid.Program()):
        with fluid.unique_name.guard():
Y
yuyang18 已提交
80
            test_loss, test_queue, test_reader = network(False)
Y
yuyang18 已提交
81 82 83

    fluid.Executor(fluid.CUDAPlace(0)).run(startup_prog)

Y
yuyang18 已提交
84 85 86 87 88
    trainer = fluid.ParallelExecutor(
        use_cuda=True, loss_name=loss.name, main_program=train_prog)

    tester = fluid.ParallelExecutor(
        use_cuda=True, share_vars_from=trainer, main_program=test_prog)
Y
yuyang18 已提交
89 90

    for epoch_id in xrange(10):
Y
yuyang18 已提交
91 92
        train_data_thread = pipe_reader_to_queue(
            paddle.batch(mnist.train(), 32), train_queue)
Y
yuyang18 已提交
93
        try:
Y
yuyang18 已提交
94 95 96
            while True:
                print 'train_loss', numpy.array(
                    trainer.run(fetch_list=[loss.name]))
Y
yuyang18 已提交
97 98
        except fluid.core.EOFException:
            print 'End of epoch', epoch_id
Y
yuyang18 已提交
99 100 101 102 103 104 105 106 107 108 109 110 111 112
            train_reader.reset()
        train_data_thread.join()

        test_data_thread = pipe_reader_to_queue(
            paddle.batch(mnist.train(), 32), test_queue)
        try:
            while True:
                print numpy.array(tester.run(fetch_list=[test_loss.name]))
        except fluid.core.EOFException:
            print 'End of testing'
            test_reader.reset()

        test_data_thread.join()
        break
Y
yuyang18 已提交
113 114 115 116


if __name__ == '__main__':
    main()