softmax_op.cc 8.9 KB
Newer Older
1
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserved.
2

Q
Qiao Longfei 已提交
3 4 5
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
6

Q
Qiao Longfei 已提交
7 8 9 10 11 12 13
    http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
14

Y
Yi Wang 已提交
15
#include "paddle/fluid/operators/softmax_op.h"
16

D
dengkaipeng 已提交
17
#include <memory>
18 19
#include <string>

K
Kexin Zhao 已提交
20 21 22
#ifdef PADDLE_WITH_CUDA
#include "paddle/fluid/platform/cudnn_helper.h"
#endif
23

24 25 26
#ifdef PADDLE_WITH_MKLDNN
#include "paddle/fluid/platform/mkldnn_helper.h"
#endif
27

28 29 30
namespace paddle {
namespace operators {

D
dongzhihong 已提交
31
class SoftmaxOp : public framework::OperatorWithKernel {
Y
Yu Yang 已提交
32 33 34
 public:
  using framework::OperatorWithKernel::OperatorWithKernel;

35
  void InferShape(framework::InferShapeContext* ctx) const override {
Q
Qiao Longfei 已提交
36 37
    PADDLE_ENFORCE(ctx->HasInput("X"),
                   "Input(X) of SoftmaxOp should not be null.");
F
fengjiayi 已提交
38 39
    PADDLE_ENFORCE(ctx->HasOutput("Out"),
                   "Output(Out) of SoftmaxOp should not be null.");
Q
Qiao Longfei 已提交
40

41 42 43 44 45 46 47
    auto dim_x = ctx->GetInputDim("X");
    auto rank_x = dim_x.size();
    auto axis = ctx->Attrs().Get<int>("axis");
    PADDLE_ENFORCE(axis >= -1 && axis < rank_x,
                   "Attr(axis) value should larger equal then -1"
                   "and less then the rank of Input(X)");

F
fengjiayi 已提交
48
    ctx->SetOutputDim("Out", ctx->GetInputDim("X"));
Q
Qiao Longfei 已提交
49
    ctx->ShareLoD("X", /*->*/ "Out");
50
  }
51 52 53 54 55

 protected:
  framework::OpKernelType GetExpectedKernelType(
      const framework::ExecutionContext& ctx) const override {
    // choose cudnn kernel if the runtime supported.
K
Kexin Zhao 已提交
56
    framework::LibraryType library_{framework::LibraryType::kPlain};
M
mozga-intel 已提交
57 58 59
    std::string data_format = ctx.Attr<std::string>("data_format");
    framework::DataLayout layout_ = framework::StringToDataLayout(data_format);

60
#ifdef PADDLE_WITH_CUDA
K
Kexin Zhao 已提交
61
    if (platform::CanCUDNNBeUsed(ctx)) {
K
Kexin Zhao 已提交
62
      library_ = framework::LibraryType::kCUDNN;
63 64
    }
#endif
65 66 67 68
#ifdef PADDLE_WITH_MKLDNN
    if (library_ == framework::LibraryType::kPlain &&
        platform::CanMKLDNNBeUsed(ctx)) {
      library_ = framework::LibraryType::kMKLDNN;
M
mozga-intel 已提交
69
      layout_ = framework::DataLayout::kMKLDNN;
70 71
    }
#endif
K
Kexin Zhao 已提交
72

Y
Yu Yang 已提交
73
    auto input_data_type = ctx.Input<Tensor>("X")->type();
K
Kexin Zhao 已提交
74
    if (input_data_type == framework::proto::VarType::FP16) {
75 76
      PADDLE_ENFORCE(platform::is_gpu_place(ctx.GetPlace()),
                     "float16 can only be used on GPU place");
K
Kexin Zhao 已提交
77 78
    }

M
mozga-intel 已提交
79
    return framework::OpKernelType(input_data_type, ctx.GetPlace(), layout_,
K
Kexin Zhao 已提交
80
                                   library_);
81
  }
82
};
83

D
dongzhihong 已提交
84
class SoftmaxOpMaker : public framework::OpProtoAndCheckerMaker {
85
 public:
Y
Yu Yang 已提交
86
  void Make() override {
87
    AddInput("X",
F
fengjiayi 已提交
88
             "The input tensor of softmax, "
D
dengkaipeng 已提交
89
             "whose dimension :attr:`axis` is the input_feature_dimensions.");
90
    AddOutput("Out", "The normalized values with the same shape as X.");
91
    AddAttr<int>("axis",
D
dengkaipeng 已提交
92
                 "The dimension index of Input(x) to perform softmax,"
93 94
                 "default -1 for last dimension")
        .SetDefault(-1);
95 96 97 98 99 100 101 102 103 104 105
    AddAttr<bool>(
        "use_cudnn",
        "(bool, default false) Only used in cudnn kernel, need install cudnn")
        .SetDefault(false);
    AddAttr<std::string>(
        "data_format",
        "(string, default NCHW) Only used in "
        "An optional string from: \"NHWC\", \"NCHW\". "
        "Defaults to \"NHWC\". Specify the data format of the output data, "
        "the input will be transformed automatically. ")
        .SetDefault("AnyLayout");
106 107 108
    AddAttr<bool>("use_mkldnn",
                  "(bool, default false) Only used in mkldnn kernel")
        .SetDefault(false);
J
Jacek Czaja 已提交
109
    AddAttr<bool>("is_test",
110 111
                  "(bool, default false) Set to true for inference only, false "
                  "for training. Some layers may run faster when this is true.")
J
Jacek Czaja 已提交
112
        .SetDefault(false);
C
caoying03 已提交
113
    AddComment(R"DOC(
114 115
Softmax Operator.

116
The input of the softmax operator is a tensor of any rank. The output tensor
F
fengjiayi 已提交
117
has the same shape as the input.
C
caoying03 已提交
118

D
dengkaipeng 已提交
119
The dimension :attr:`axis` of the input tensor will be permuted to the last.
D
dengkaipeng 已提交
120
Then the input tensor will be logically flattened to a 2-D matrix. The matrix's
D
dengkaipeng 已提交
121
second dimension(row length) is as same as the dimension :attr:`axis` of the input
122 123 124
tensor, and the first dimension(column length) is the product of all other
dimensions of the input tensor. For each row of the matrix, the softmax operator
squashes the K-dimensional(K is the width of the matrix, which is also the size
D
dengkaipeng 已提交
125
of the input tensor's dimension :attr:`axis`) vector of arbitrary real values to a
F
fengjiayi 已提交
126
K-dimensional vector of real values in the range [0, 1] that add up to 1.
127 128 129 130 131
It computes the exponential of the given dimension and the sum of exponential
values of all the other dimensions in the K-dimensional vector input.
Then the ratio of the exponential of the given dimension and the sum of
exponential values of all the other dimensions is the output of the softmax
operator.
C
caoying03 已提交
132

F
fengjiayi 已提交
133
For each row $i$ and each column $j$ in the matrix, we have:
F
fengjiayi 已提交
134
    $$Out[i, j] = \frac{\exp(X[i, j])}{\sum_j(exp(X[i, j])}$$
C
caoying03 已提交
135 136

)DOC");
137 138 139
  }
};

C
chengduo 已提交
140 141 142 143 144 145 146 147
class SoftmaxOpInferVarType : public framework::PassInDtypeAndVarTypeToOutput {
 protected:
  std::unordered_map<std::string, std::string> GetInputOutputWithSameType()
      const override {
    return std::unordered_map<std::string, std::string>{{"X", /*->*/ "Out"}};
  }
};

D
dongzhihong 已提交
148
class SoftmaxOpGrad : public framework::OperatorWithKernel {
Y
Yu Yang 已提交
149 150 151
 public:
  using framework::OperatorWithKernel::OperatorWithKernel;

152
  void InferShape(framework::InferShapeContext* ctx) const override {
F
fengjiayi 已提交
153 154 155 156 157 158
    PADDLE_ENFORCE(ctx->HasInput("Out"), "Input(Out) should be not null.");
    PADDLE_ENFORCE(ctx->HasInput(framework::GradVarName("Out")),
                   "Input(Out@GRAD) should be not null.");
    PADDLE_ENFORCE_EQ(ctx->GetInputDim("Out"),
                      ctx->GetInputDim(framework::GradVarName("Out")),
                      "Input(Out) and its gradients should have a same shape.");
159

160 161
    ctx->SetOutputDim(framework::GradVarName("X"),
                      ctx->GetInputDim(framework::GradVarName("Out")));
D
dongzhihong 已提交
162
  }
163 164 165 166 167

 protected:
  framework::OpKernelType GetExpectedKernelType(
      const framework::ExecutionContext& ctx) const override {
    // choose cudnn kernel if the runtime supported.
K
Kexin Zhao 已提交
168
    framework::LibraryType library_{framework::LibraryType::kPlain};
J
Jacek Czaja 已提交
169 170
    std::string data_format = ctx.Attr<std::string>("data_format");
    framework::DataLayout layout_ = framework::StringToDataLayout(data_format);
M
mozga-intel 已提交
171

172
#ifdef PADDLE_WITH_CUDA
K
Kexin Zhao 已提交
173
    if (platform::CanCUDNNBeUsed(ctx)) {
K
Kexin Zhao 已提交
174
      library_ = framework::LibraryType::kCUDNN;
175 176
    }
#endif
J
Jacek Czaja 已提交
177 178 179 180 181 182 183
#ifdef PADDLE_WITH_MKLDNN
    if (library_ == framework::LibraryType::kPlain &&
        platform::CanMKLDNNBeUsed(ctx)) {
      library_ = framework::LibraryType::kMKLDNN;
      layout_ = framework::DataLayout::kMKLDNN;
    }
#endif
Y
Yu Yang 已提交
184 185
    auto input_data_type =
        ctx.Input<Tensor>(framework::GradVarName("Out"))->type();
J
Jacek Czaja 已提交
186 187 188 189 190 191 192
    if (input_data_type == framework::proto::VarType::FP16) {
      PADDLE_ENFORCE(platform::is_gpu_place(ctx.GetPlace()),
                     "float16 can only be used on GPU place");
    }

    return framework::OpKernelType(input_data_type, ctx.GetPlace(), layout_,
                                   library_);
193
  }
D
dongzhihong 已提交
194 195
};

196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213
class SoftmaxOpGradMaker : public framework::SingleGradOpDescMaker {
 public:
  using framework::SingleGradOpDescMaker::SingleGradOpDescMaker;

 protected:
  std::unique_ptr<framework::OpDesc> Apply() const override {
    auto* op = new framework::OpDesc();
    op->SetType("softmax_grad");

    op->SetInput("Out", Output("Out"));
    op->SetInput(framework::GradVarName("Out"), OutputGrad("Out"));

    op->SetAttrMap(Attrs());

    op->SetOutput(framework::GradVarName("X"), InputGrad("X"));
    return std::unique_ptr<framework::OpDesc>(op);
  }
};
D
dzhwinter 已提交
214 215 216 217 218 219 220 221 222 223 224 225 226 227 228

class SoftmaxInplaceInToOut : public framework::InplaceInToOut {
 public:
  using framework::InplaceInToOut::InplaceInToOut;

 protected:
  std::unordered_map<std::string, std::string> Apply(
      const framework::OpDesc& op_desc,
      framework::BlockDesc* block) const override {
    return std::unordered_map<std::string, std::string>{
        {"X", "Out"},
    };
  }
};

229 230 231
}  // namespace operators
}  // namespace paddle

D
dongzhihong 已提交
232
namespace ops = paddle::operators;
D
dongzhihong 已提交
233

Y
Yang Yang 已提交
234
REGISTER_OPERATOR(softmax, ops::SoftmaxOp, ops::SoftmaxOpMaker,
C
chengduo 已提交
235
                  ops::SoftmaxOpInferVarType, ops::SoftmaxOpGradMaker);
236
REGISTER_OPERATOR(softmax_grad, ops::SoftmaxOpGrad);
D
dongzhihong 已提交
237
REGISTER_OP_CPU_KERNEL(
D
dzhwinter 已提交
238 239
    softmax, ops::SoftmaxKernel<paddle::platform::CPUDeviceContext, float>,
    ops::SoftmaxKernel<paddle::platform::CPUDeviceContext, double>);
Q
QI JUN 已提交
240 241
REGISTER_OP_CPU_KERNEL(
    softmax_grad,
D
dzhwinter 已提交
242 243
    ops::SoftmaxGradKernel<paddle::platform::CPUDeviceContext, float>,
    ops::SoftmaxGradKernel<paddle::platform::CPUDeviceContext, double>);