beam_search_decode_op.cc 5.4 KB
Newer Older
Q
Qiao Longfei 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserve.

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

    http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */

#include "paddle/operators/beam_search_decode_op.h"
D
dzhwinter 已提交
16
#include "paddle/platform/device_context.h"
Q
Qiao Longfei 已提交
17 18 19 20

namespace paddle {
namespace operators {

21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50
struct BeamSearchDecodeFunctor {
  BeamSearchDecodeFunctor(const LoDTensorArray& step_ids,
                          const LoDTensorArray& step_scores,
                          LoDTensor* id_tensor, LoDTensor* score_tensor)
      : step_ids_(step_ids),
        step_scores_(step_scores),
        id_tensor_(id_tensor),
        score_tensor_(score_tensor) {}

  template <typename T>
  void operator()() const;

  const LoDTensorArray& step_ids_;
  const LoDTensorArray& step_scores_;
  LoDTensor* id_tensor_;
  LoDTensor* score_tensor_;
};

template <typename T>
void BeamSearchDecodeFunctor::operator()() const {
  BeamSearchDecoder<T> beam_search_decoder;
  beam_search_decoder.PackAllSteps(step_ids_, step_scores_, id_tensor_,
                                   score_tensor_);
}

template <>
void BeamSearchDecodeFunctor::operator()<bool>() const {
  PADDLE_THROW("beam search decode op does not support bool!");
}

Q
Qiao Longfei 已提交
51 52 53 54 55 56 57 58
class BeamSearchDecodeOp : public framework::OperatorBase {
 public:
  BeamSearchDecodeOp(const std::string& type,
                     const framework::VariableNameMap& inputs,
                     const framework::VariableNameMap& outputs,
                     const framework::AttributeMap& attrs)
      : OperatorBase(type, inputs, outputs, attrs) {}
  void Run(const framework::Scope& scope,
D
dzhwinter 已提交
59 60 61 62
           const platform::Place& dev_place) const override {
    platform::DeviceContextPool& pool = platform::DeviceContextPool::Get();
    auto& dev_ctx = *pool.Borrow(dev_place);

Q
Qiao Longfei 已提交
63
    framework::ExecutionContext ctx(*this, scope, dev_ctx);
64

Q
Qiao Longfei 已提交
65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81
    const LoDTensorArray* ids = ctx.Input<LoDTensorArray>("Ids");
    const LoDTensorArray* scores = ctx.Input<LoDTensorArray>("Scores");
    const size_t step_num = ids->size();
    PADDLE_ENFORCE_GT(step_num, 0UL,
                      "beam search steps should be larger than 0");
    const size_t source_num = ids->at(0).lod().at(0).size() - 1;
    PADDLE_ENFORCE_GT(source_num, 0UL, "source num should be larger than 0");

    for (size_t i = 0; i < step_num; ++i) {
      PADDLE_ENFORCE_EQ(ids->at(i).lod().size(), 2UL,
                        "Level of LodTensor should be 2");
    }

    // prepare output
    LoDTensor* sentenceIds = ctx.Output<LoDTensor>("SentenceIds");
    LoDTensor* sentenceScores = ctx.Output<LoDTensor>("SentenceScores");

82 83 84
    framework::VisitDataType(
        framework::ToDataType(scores->at(0).type()),
        BeamSearchDecodeFunctor(*ids, *scores, sentenceIds, sentenceScores));
Q
Qiao Longfei 已提交
85 86 87 88 89
  }
};

class BeamSearchDecodeOpProtoMaker : public framework::OpProtoAndCheckerMaker {
 public:
90 91
  BeamSearchDecodeOpProtoMaker(OpProto* proto, OpAttrChecker* op_checker)
      : framework::OpProtoAndCheckerMaker(proto, op_checker) {
Q
Qiao Longfei 已提交
92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125
    AddInput("Ids",
             "(LodTensorArray)"
             "score of the candidate words in each step");
    AddInput("Scores",
             "(LodTensorArray)"
             "score of the candidate words in each step");
    AddOutput("SentenceIds",
              "(LodTensor)"
              "All possible result sentences of word ids");
    AddOutput("SentenceScores",
              "(LodTensor)"
              "All possible result sentences of word scores");
    AddComment(R"DOC(
Pack the result of Beam search op into SentenceIds and SentenceScores.
)DOC");
  }
};

class BeamSearchDecodeInferShape : public framework::InferShapeBase {
 public:
  void operator()(framework::InferShapeContext* context) const override {
    PADDLE_ENFORCE(context->HasInput("Ids"),
                   "BeamSearchDecodeOp must has input Ids");
    PADDLE_ENFORCE(context->HasInput("Scores"),
                   "BeamSearchDecodeOp must has input Scores");
    PADDLE_ENFORCE(context->HasOutput("SentenceIds"),
                   "BeamSearchDecodeOp must has output SentenceIds");
    PADDLE_ENFORCE(context->HasOutput("SentenceScores"),
                   "BeamSearchDecodeOp must has output SentenceScores");
  }
};

class BeamSearchDecodeInferVarType : public framework::VarTypeInference {
 public:
Y
Yu Yang 已提交
126 127
  void operator()(const framework::OpDesc& op_desc,
                  framework::BlockDesc* block) const override {
Q
Qiao Longfei 已提交
128
    for (auto& o : op_desc.Output("SentenceIds")) {
129
      block->Var(o)->SetType(framework::proto::VarDesc::LOD_TENSOR);
Q
Qiao Longfei 已提交
130 131
    }
    for (auto& o : op_desc.Output("SentenceScores")) {
132
      block->Var(o)->SetType(framework::proto::VarDesc::LOD_TENSOR);
Q
Qiao Longfei 已提交
133 134 135 136 137 138 139 140 141 142 143 144
    }
  }
};

}  // namespace operators
}  // namespace paddle

REGISTER_OPERATOR(beam_search_decode, paddle::operators::BeamSearchDecodeOp,
                  paddle::operators::BeamSearchDecodeOpProtoMaker,
                  paddle::operators::BeamSearchDecodeInferShape,
                  paddle::operators::BeamSearchDecodeInferVarType,
                  paddle::framework::EmptyGradOpMaker);