fleet_heter_ps_training.py 4.6 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
# Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

import paddle
import paddle.distributed.fleet as fleet
17
import paddle.fluid as fluid
18 19 20 21 22 23 24 25 26 27 28 29 30 31 32

fluid.disable_dygraph()


def get_dataset(inputs):
    dataset = fluid.DatasetFactory().create_dataset()
    dataset.set_use_var(inputs)
    dataset.set_batch_size(1)
    dataset.set_filelist([])
    dataset.set_thread(1)
    return dataset


def net(batch_size=4, lr=0.01):
    """
33 34 35 36 37 38 39 40
    network definition

    Args:
        batch_size(int): the size of mini-batch for training
        lr(float): learning rate of training
    Returns:
        avg_cost: LoDTensor of cost.
    """
41 42 43
    dnn_input_dim, lr_input_dim = int(2), int(2)

    with fluid.device_guard("cpu"):
44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64
        dnn_data = fluid.layers.data(
            name="dnn_data",
            shape=[-1, 1],
            dtype="int64",
            lod_level=1,
            append_batch_size=False,
        )
        lr_data = fluid.layers.data(
            name="lr_data",
            shape=[-1, 1],
            dtype="int64",
            lod_level=1,
            append_batch_size=False,
        )
        label = fluid.layers.data(
            name="click",
            shape=[-1, 1],
            dtype="float32",
            lod_level=0,
            append_batch_size=False,
        )
65 66 67 68 69 70 71 72 73 74 75

        datas = [dnn_data, lr_data, label]

        # build dnn model
        dnn_layer_dims = [2, 1]
        dnn_embedding = fluid.layers.embedding(
            is_distributed=False,
            input=dnn_data,
            size=[dnn_input_dim, dnn_layer_dims[0]],
            param_attr=fluid.ParamAttr(
                name="deep_embedding",
76 77 78 79 80 81 82
                initializer=fluid.initializer.Constant(value=0.01),
            ),
            is_sparse=True,
        )
        dnn_pool = fluid.layers.sequence_pool(
            input=dnn_embedding, pool_type="sum"
        )
83 84 85 86 87 88 89 90 91
        dnn_out = dnn_pool

        # build lr model
        lr_embbding = fluid.layers.embedding(
            is_distributed=False,
            input=lr_data,
            size=[lr_input_dim, 1],
            param_attr=fluid.ParamAttr(
                name="wide_embedding",
92 93 94 95
                initializer=fluid.initializer.Constant(value=0.01),
            ),
            is_sparse=True,
        )
96 97 98 99 100 101 102 103 104
        lr_pool = fluid.layers.sequence_pool(input=lr_embbding, pool_type="sum")

    with fluid.device_guard("gpu"):
        for i, dim in enumerate(dnn_layer_dims[1:]):
            fc = fluid.layers.fc(
                input=dnn_out,
                size=dim,
                act="relu",
                param_attr=fluid.ParamAttr(
105 106 107 108
                    initializer=fluid.initializer.Constant(value=0.01)
                ),
                name='dnn-fc-%d' % i,
            )
109 110 111 112 113 114 115
            dnn_out = fc

        merge_layer = fluid.layers.concat(input=[dnn_out, lr_pool], axis=1)
        label = fluid.layers.cast(label, dtype="int64")
        predict = fluid.layers.fc(input=merge_layer, size=2, act='softmax')

        cost = fluid.layers.cross_entropy(input=predict, label=label)
116
        avg_cost = paddle.mean(x=cost)
117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139
    return datas, avg_cost


'''
optimizer = fluid.optimizer.Adam(learning_rate=0.01)

role = role_maker.PaddleCloudRoleMaker()
fleet.init(role)

strategy = paddle.distributed.fleet.DistributedStrategy()
strategy.a_sync = True
strategy.a_sync_configs = {"heter_worker_device_guard": 'gpu'}

strategy.pipeline = True
strategy.pipeline_configs = {"accumulate_steps": 1, "micro_batch_size": 2048}
feeds, avg_cost = net()
optimizer = fleet.distributed_optimizer(optimizer, strategy)
optimizer.minimize(avg_cost)
dataset = get_dataset(feeds)
'''

if fleet.is_server():
    pass
140 141
    # fleet.init_server()
    # fleet.run_server()
142 143
elif fleet.is_heter_worker():
    pass
144 145
    # fleet.init_heter_worker()
    # fleet.run_heter_worker(dataset=dataset)
146 147 148
    fleet.stop_worker()
elif fleet.is_worker():
    pass
149 150 151 152 153 154
    # place = fluid.CPUPlace()
    # exe = fluid.Executor(place)
    # exe.run(fluid.default_startup_program())
    # fleet.init_worker()
    # step = 1
    # for i in range(step):
155 156
    #    exe.train_from_dataset(
    #        program=fluid.default_main_program(), dataset=dataset, debug=False)
157 158
    # exe.close()
    # fleet.stop_worker()