test_dgc_momentum_op.py 4.9 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36
#   Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

from __future__ import print_function

import unittest
import numpy as np
import paddle.fluid.core as core
from paddle.fluid.op import Operator
import paddle.fluid as fluid


class TestDGCMomentumOp1(unittest.TestCase):
    def get_tensor(self, name, value, place=None):
        tensor = self.scope.var(name).get_tensor()
        tensor.set(value, self.place if place is None else place)
        return name, tensor

    def setup(self, place, step=0.0):
        self.scope = fluid.global_scope()
        self.place = place
        print("place:", place)

        self.op_type = "dgc_momentum"
        self.dtype = np.float32
37
        nranks_val = 2
38 39 40 41 42 43

        param = np.random.random((123, 321)).astype(self.dtype)
        grad = np.random.random((123, 321)).astype(self.dtype)
        velocity = np.zeros((123, 321)).astype(self.dtype)
        learning_rate = np.array([0.001]).astype(self.dtype)
        current_step = np.full((1), step).astype("float32")
44
        nranks = np.full((1), nranks_val).astype("float32")
45 46 47 48
        mu = 0.0001
        use_nesterov = False
        rampup_begin_step = 10.0

49
        # get tensor
50 51 52 53 54 55 56 57
        self.param_name, self.param_tensor = self.get_tensor('Param', param)
        self.grad_name, self.grad_tensor = self.get_tensor('Grad', grad)
        self.velocity_name, self.velocity_tensor = self.get_tensor('Velocity',
                                                                   velocity)
        self.learning_rate_name, self.learning_rate_tensor = self.get_tensor(
            'LearningRate', learning_rate)
        self.current_step_name, self.current_step_tensor = self.get_tensor(
            'current_step', current_step, core.CPUPlace())
58 59
        self.nranks_name, self.nranks_tensor = self.get_tensor('nranks', nranks,
                                                               core.CPUPlace())
60 61 62 63 64 65 66 67

        self.kwargs = {
            # inputs
            'Param': self.param_name,
            'Grad': self.grad_name,
            'Velocity': self.velocity_name,
            'LearningRate': self.learning_rate_name,
            'current_step': self.current_step_name,
68
            'nranks': self.nranks_name,
69 70 71 72 73 74 75 76

            # attrs
            'mu': mu,
            'use_nesterov': use_nesterov,
            'rampup_begin_step': rampup_begin_step,

            # outputs
            'ParamOut': self.param_name,
77 78
            'VelocityOut': self.velocity_name,
            'Grad_out': self.grad_name,
79 80
        }

81
        velocity_out = mu * velocity + grad / nranks
82 83 84 85 86 87
        if use_nesterov:
            param_out = param - grad * learning_rate - \
                        velocity_out * mu * learning_rate
        else:
            param_out = param - learning_rate * velocity_out

88
        sgd_out = param - learning_rate * grad / nranks
89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141

        self.outputs = {
            'ParamOut': param_out,
            'VelocityOut': velocity_out,
            'SGDOut': sgd_out
        }

    def check(self, actual_t, expect_t, place, out_name, atol=1e-5):
        self.assertTrue(
            np.allclose(
                actual_t, expect_t, atol=atol),
            "Output (" + out_name + ") has diff at " + str(place) + "\nExpect "
            + str(expect_t) + "\n" + "But Got" + str(actual_t))

    def check_momentum_step(self, place):
        self.setup(place=place)

        dgc_momentum_op = Operator(self.op_type, **self.kwargs)
        dgc_momentum_op.run(self.scope, self.place)

        self.check(
            np.array(self.param_tensor), self.outputs['ParamOut'], self.place,
            self.param_name)

        self.check(
            np.array(self.velocity_tensor), self.outputs['VelocityOut'],
            self.place, self.velocity_name)

    def check_sgd_step(self, place):
        self.setup(place=place, step=15.0)

        dgc_momentum_op = Operator(self.op_type, **self.kwargs)
        dgc_momentum_op.run(self.scope, self.place)

        self.check(
            np.array(self.param_tensor), self.outputs['SGDOut'], self.place,
            self.param_name)

    def test_cuda_place(self):
        if not core.is_compiled_with_cuda():
            return
        place = core.CUDAPlace(0)
        self.check_momentum_step(place)
        self.check_sgd_step(place)

    def test_cpu_place(self):
        place = core.CPUPlace()
        self.check_momentum_step(place)
        self.check_sgd_step(place)


if __name__ == "__main__":
    unittest.main()