transpose_functor.cu.h 41.8 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
/* Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved.

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

    http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */

#pragma once

H
hong 已提交
17
#include "paddle/phi/backends/gpu/gpu_launch_config.h"
18
#include "paddle/phi/backends/gpu/gpu_primitives.h"
19
#include "paddle/phi/backends/gpu/gpu_utils.h"
20
#include "paddle/phi/core/tensor_utils.h"
21
#include "paddle/phi/kernels/autotune/auto_tune_base.h"
22 23
#include "paddle/phi/kernels/funcs/transpose_functor.h"
#include "paddle/phi/kernels/primitive/datamover_primitives.h"
24

25 26
namespace phi {
namespace funcs {
27

28
using Tensor = phi::DenseTensor;
29 30 31 32 33 34 35 36 37 38 39

struct EqualTo {
  constexpr bool operator()(int a, int b) const { return a == b; }
};

struct GreaterThan {
  constexpr bool operator()(int a, int b) const { return a > b; }
};

// Value can be decided in compile time.
template <typename FUN, int INT_32 = 32>
40 41 42
constexpr bool CheckProperTileSize(int tile_long,
                                   int tile_short,
                                   int size_T,
43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78
                                   FUN op) {
  return (size_T == 16 && ((tile_long == INT_32 && op(tile_short, 4)) ||
                           (tile_long == 2 * INT_32 && op(tile_short, 4)) ||
                           (tile_long == 4 * INT_32 && op(tile_short, 4)) ||
                           (tile_long == 8 * INT_32 && op(tile_short, 2)))) ||
         (size_T == 8 && ((tile_long == INT_32 && op(tile_short, 15)) ||
                          (tile_long == 2 * INT_32 && op(tile_short, 15)) ||
                          (tile_long == 4 * INT_32 && op(tile_short, 8)) ||
                          (tile_long == 8 * INT_32 && op(tile_short, 4)) ||
                          (tile_long == 16 * INT_32 && op(tile_short, 2)))) ||
         ((size_T == 4 || size_T == 2 || size_T == 1) &&
          ((tile_long == INT_32 && op(tile_short, 15)) ||
           (tile_long == 2 * INT_32 && op(tile_short, 15)) ||
           (tile_long == 4 * INT_32 && op(tile_short, 8)) ||
           (tile_long == 8 * INT_32 && op(tile_short, 4)) ||
           (tile_long == 16 * INT_32 && op(tile_short, 2)) ||
           (tile_long == 16 * INT_32 && op(tile_short, 2))));
}

constexpr bool CheckLongTileSize(int tile_long, int tile_short, int size_T) {
  return CheckProperTileSize(tile_long, tile_short, size_T, EqualTo());
}

constexpr bool CheckOutsideTileSize(int tile_long, int tile_short, int size_T) {
  return CheckProperTileSize(tile_long, tile_short, size_T, GreaterThan());
}

constexpr bool CheckNonLongTileSize(int tile_long, int tile_short, int size_T) {
  return !CheckOutsideTileSize(tile_long, tile_short, size_T) &&
         (CheckOutsideTileSize(tile_long * 2, tile_short, size_T) ||
          CheckOutsideTileSize(tile_long, tile_short + 1, size_T)) &&
         !CheckLongTileSize(tile_long, tile_short, size_T);
}

// Use SM to do data transfer, load a tile into SM then store out.
// All tile read and write are colascing, so can speedup memory copy
79 80 81 82
template <typename T,
          int NumThreads,
          int TileX,
          int TileY,
83
          typename IndexType = int>
84 85
__global__ void TilingSwapDim1And2(const T* __restrict__ input,
                                   Dim3 input_dims,
86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105
                                   T* __restrict__ output) {
  assert(blockDim.x == NumThreads);
  assert(blockDim.y == 1);
  assert(blockDim.z == 1);
  assert(gridDim.y == 1);
  assert(gridDim.z == 1);

  constexpr int BlockReadRows = NumThreads / TileY;
  constexpr int BlockWriteRows = NumThreads / TileX;

  // One extra line in the inner dimension to avoid share memory bank conflict.
  __shared__ __align__(
      alignof(T)) char share_mem_ptr[TileX * (TileY + 1) * sizeof(T)];
  typedef T(*ShareMemory)[TileY + 1];

  ShareMemory tile_sm = reinterpret_cast<ShareMemory>(share_mem_ptr);

  int x = threadIdx.x;

  Dim3 output_dims = {
106 107 108
      input_dims[0],
      input_dims[2],
      input_dims[1],
109 110 111 112
  };

  // Align dim to Tiles
  Dim3 tile_aligned_input_dim = {
113 114
      input_dims[0],
      (input_dims[1] + TileX - 1) / TileX,
115 116 117 118
      (input_dims[2] + TileY - 1) / TileY,
  };

  // Converts block idx to tile index, each block process a tile
119 120
  Index3 input_block_tile_index =
      ConvertTensorIndex<IndexType>(blockIdx.x, tile_aligned_input_dim);
121 122 123

  // Compute real index align to tile:0, 32, 64...
  Index3 block_tile_index_in_input = {
124 125
      input_block_tile_index[0],
      input_block_tile_index[1] * TileX,
126 127 128 129
      input_block_tile_index[2] * TileY,
  };

  // Compute block flat index against input dims.
130
  IndexType input_origin_block_flat_index =
131
      FlatTensorIndex<IndexType>(block_tile_index_in_input, input_dims);
132 133

  bool full_tile = true;
134
  IndexType tile_width = TileY;
135 136 137 138 139 140 141

  // Last row is not full.
  if (input_block_tile_index[2] == tile_aligned_input_dim[2] - 1) {
    tile_width = input_dims[2] - (tile_aligned_input_dim[2] - 1) * TileY;
    full_tile &= false;
  }

142
  IndexType tile_height = TileX;
143 144 145 146 147 148

  if (input_block_tile_index[1] == tile_aligned_input_dim[1] - 1) {
    tile_height = input_dims[1] - (tile_aligned_input_dim[1] - 1) * TileX;
    full_tile &= false;
  }

149
  constexpr IndexType in_effective_thread_num = NumThreads / TileY * TileY;
150 151 152 153 154

  if (x < in_effective_thread_num) {
    // Read a tile from input using block.
    int x_i = x / TileY;
    int x_j = x % TileY;
155 156 157
    IndexType input_ind =
        input_origin_block_flat_index + x_i * input_dims[2] + x_j;
    IndexType input_inc = BlockReadRows * input_dims[2];
158 159 160 161 162 163 164 165 166 167

    if (full_tile) {
#pragma unroll
      for (int ind_i = x_i; ind_i < (TileX); ind_i += BlockReadRows) {
        tile_sm[ind_i][x_j] = input[input_ind];
        input_ind += input_inc;
      }
    } else {
      if (x_j < tile_width) {
#pragma unroll
168 169
        for (IndexType ind_i = x_i; ind_i < (tile_height);
             ind_i += BlockReadRows) {
170 171 172 173 174 175 176 177 178 179 180
          tile_sm[ind_i][x_j] = input[input_ind];
          input_ind += input_inc;
        }
      }
    }
  }

  __syncthreads();

  // Store sm value back to out
  Index3 output_block_tile_index = {
181 182
      input_block_tile_index[0],
      input_block_tile_index[2],
183 184 185 186
      input_block_tile_index[1],
  };

  Index3 block_tile_index_in_output = {
187 188
      output_block_tile_index[0],
      output_block_tile_index[1] * TileY,
189 190 191
      output_block_tile_index[2] * TileX,
  };

192
  IndexType output_origin_block_flat_index =
193
      FlatTensorIndex<IndexType>(block_tile_index_in_output, output_dims);
194

195
  constexpr IndexType out_effective_thread_num = NumThreads / TileX * TileX;
196 197 198 199

  if (x < out_effective_thread_num) {
    int x_i = x / TileX;
    int x_j = x % TileX;
200
    IndexType output_ind =
201
        output_origin_block_flat_index + x_i * output_dims[2] + x_j;
202
    IndexType output_inc = BlockWriteRows * output_dims[2];
203 204 205 206 207 208 209 210 211 212

    if (full_tile) {
#pragma unroll
      for (int ind_i = x_i; ind_i < (TileY); ind_i += BlockWriteRows) {
        output[output_ind] = tile_sm[x_j][ind_i];
        output_ind += output_inc;
      }
    } else {
      if (x_j < tile_height) {
#pragma unroll
213 214
        for (IndexType ind_i = x_i; ind_i < (tile_width);
             ind_i += BlockWriteRows) {
215 216 217 218 219 220 221 222 223 224 225 226
          output[output_ind] = tile_sm[x_j][ind_i];
          output_ind += output_inc;
        }
      }
    }
  }
}

// This function will find combination of long_side X short_side in backups
template <int TSIZE>
bool SelectProperTileSize(std::vector<std::pair<int, int>>* tiles) {
  PADDLE_ENFORCE_LE(
227 228
      TSIZE,
      16,
229
      phi::errors::InvalidArgument(
230 231 232
          "The tile size should smaller than 16, but received is:%d.", TSIZE));

  PADDLE_ENFORCE_EQ(
233 234
      (TSIZE & (TSIZE - 1)),
      0,
235
      phi::errors::InvalidArgument(
236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278
          "Data types should be powers of 2, but reived size is:%d.", TSIZE));

  const int kMaxLongSideLen = 1024;
  const int kMaxShortSideLen = 15;

  for (int long_side = 32; long_side <= kMaxLongSideLen; long_side *= 2) {
    for (int short_side = 2; short_side <= kMaxShortSideLen; short_side += 1) {
      if (CheckLongTileSize(long_side, short_side, TSIZE)) {
        tiles->push_back(std::make_pair(long_side, short_side));

        if (short_side == 2) return true;

        break;
      }
    }
  }
  return false;
}

// Use system built in type
template <int ByteSize>
struct SystemElemType;
template <>
struct SystemElemType<1> {
  using type = uint8_t;
};
template <>
struct SystemElemType<2> {
  using type = uint16_t;
};
template <>
struct SystemElemType<4> {
  using type = uint32_t;
};
template <>
struct SystemElemType<8> {
  using type = uint64_t;
};
template <>
struct SystemElemType<16> {
  using type = float4;
};

279
template <typename T, int tile_long, int tile_short, typename IndexType = int>
280 281 282
void LaunchNarrowDims2TransposeKernel(const phi::GPUContext& d,
                                      int tile_size_i,
                                      int tile_size_j,
283
                                      IndexType total_tiles_count,
284 285
                                      const T* input,
                                      const Dim3& input_dims,
H
hong 已提交
286
                                      T* output) {
287 288
  constexpr int NumThreads = tile_long;
  if (tile_size_i <= tile_long && tile_size_j <= tile_short) {
289
    TilingSwapDim1And2<T, NumThreads, tile_long, tile_short, IndexType>
290 291
        <<<total_tiles_count, NumThreads, 0, d.stream()>>>(
            input, input_dims, output);
292
  } else {
293
    TilingSwapDim1And2<T, NumThreads, tile_short, tile_long, IndexType>
294 295
        <<<total_tiles_count, NumThreads, 0, d.stream()>>>(
            input, input_dims, output);
296 297 298
  }
}

299 300 301
template <typename T,
          int tile_long,
          int tile_short,
302
          typename IndexType = int,
303
          typename dummy = void>
304
struct NarrowDims2TransposeDispatch {
305 306 307
  static void DoTranspose(const phi::GPUContext& d,
                          int tile_size_i,
                          int tile_size_j,
308
                          IndexType total_tiles_count,
309 310 311
                          const T* input,
                          const Dim3& input_dims,
                          T* output) {
312
    PADDLE_ENFORCE_EQ(
313 314
        (tile_long & (tile_long - 1)),
        0,
315
        phi::errors::InvalidArgument(
316 317 318 319 320 321 322 323
            "The length of the longer side of the tile should be power of 2."
            " But received value is:%d.",
            tile_long));

    bool request_satisfied = std::max(tile_size_i, tile_size_j) <= tile_long &&
                             std::min(tile_size_i, tile_size_j) <= tile_short;

    if (request_satisfied) {
324
      LaunchNarrowDims2TransposeKernel<T, tile_long, tile_short, IndexType>(
325 326 327 328 329 330
          d,
          tile_size_i,
          tile_size_j,
          total_tiles_count,
          input,
          input_dims,
331 332 333 334 335 336 337 338
          output);
      return;
    }

    const bool long_side_request_not_satisfied =
        std::max(tile_size_i, tile_size_j) > tile_long;

    if (long_side_request_not_satisfied) {
339
      NarrowDims2TransposeDispatch<T, tile_long * 2, tile_short, IndexType>::
340 341 342 343 344 345 346
          DoTranspose(d,
                      tile_size_i,
                      tile_size_j,
                      total_tiles_count,
                      input,
                      input_dims,
                      output);
347
    } else {
348
      NarrowDims2TransposeDispatch<T, tile_long, tile_short + 1, IndexType>::
349 350 351 352 353 354 355
          DoTranspose(d,
                      tile_size_i,
                      tile_size_j,
                      total_tiles_count,
                      input,
                      input_dims,
                      output);
356 357 358 359 360
    }
  }
};

// If Not long tile size, goto this function when compile.
361
template <typename T, int tile_long, int tile_short, typename IndexType>
362
struct NarrowDims2TransposeDispatch<
363 364 365
    T,
    tile_long,
    tile_short,
366
    IndexType,
367 368 369 370 371 372
    typename std::enable_if<CheckNonLongTileSize(
                                tile_long, tile_short, sizeof(T)),
                            void>::type> {
  static void DoTranspose(const phi::GPUContext& d,
                          int tile_size_i,
                          int tile_size_j,
373
                          IndexType total_tiles_count,
374 375 376
                          const T* input,
                          const Dim3& input_dims,
                          T* output) {
377
    PADDLE_ENFORCE_EQ(
378 379
        (tile_long & (tile_long - 1)),
        0,
380
        phi::errors::InvalidArgument(
381 382 383 384 385 386 387 388
            "The length of the longer side of the tile should be power of 2."
            " But received value is:%d.",
            tile_long));

    bool request_satisfied = std::max(tile_size_i, tile_size_j) <= tile_long &&
                             std::min(tile_size_i, tile_size_j) <= tile_short;

    if (request_satisfied) {
389
      LaunchNarrowDims2TransposeKernel<T, tile_long, tile_short, IndexType>(
390 391 392 393 394 395
          d,
          tile_size_i,
          tile_size_j,
          total_tiles_count,
          input,
          input_dims,
396 397 398 399
          output);
      return;
    }

400
    NarrowDims2TransposeDispatch<T, tile_long, tile_short + 1, IndexType>::
401 402 403 404 405 406 407
        DoTranspose(d,
                    tile_size_i,
                    tile_size_j,
                    total_tiles_count,
                    input,
                    input_dims,
                    output);
408 409 410 411
  }
};

// If long tile size, goto this function when compile.
412
template <typename T, int tile_long, int tile_short, typename IndexType>
413
struct NarrowDims2TransposeDispatch<
414 415 416
    T,
    tile_long,
    tile_short,
417
    IndexType,
418 419
    typename std::enable_if<CheckLongTileSize(tile_long, tile_short, sizeof(T)),
                            void>::type> {
420 421 422
  static void DoTranspose(const phi::GPUContext& d,
                          int tile_size_i,
                          int tile_size_j,
423
                          IndexType total_tiles_count,
424 425 426
                          const T* input,
                          const Dim3& input_dims,
                          T* output) {
427
    PADDLE_ENFORCE_EQ(
428 429
        (tile_long & (tile_long - 1)),
        0,
430
        phi::errors::InvalidArgument(
431 432 433 434
            "The length of the longer side of the tile should be power of 2,"
            " but received is:%d.",
            tile_long));

435
    LaunchNarrowDims2TransposeKernel<T, tile_long, tile_short, IndexType>(
436 437 438 439 440 441
        d,
        tile_size_i,
        tile_size_j,
        total_tiles_count,
        input,
        input_dims,
442 443 444 445
        output);
  }
};

446
template <typename T, bool conjugate = false, typename IndexType = int>
447 448 449 450
void SwapDim1And2InNarrow(const phi::GPUContext& d,
                          const T* input,
                          const Dim3& input_dims,
                          T* output,
451 452 453 454 455
                          const int kMinTileSize) {
  // First get available tile sizes for the data type requested as backups
  std::vector<std::pair<int, int>> tile_sele;
  auto ret = SelectProperTileSize<sizeof(T)>(&tile_sele);
  PADDLE_ENFORCE_EQ(
456 457
      ret,
      true,
458
      phi::errors::InvalidArgument(
459 460 461 462 463 464 465 466 467 468 469 470 471 472
          "SelectProperTileSize should return true, but return value is:%d.",
          ret));

  int tile_long_edge = 0;
  int tile_short_edge = 0;
  float lowest_cost = std::numeric_limits<float>::max();
  int input_long_edge = std::max(input_dims[1], input_dims[2]);

  // Find the tile size that best suit in  inputs.
  for (auto tile_size_pair : tile_sele) {
    int proposed_tile_long_edge = tile_size_pair.first;
    // data may not aligned to tile, so some threads wasted, we need
    // to find least wasted threads, which means we need to find tile
    // can split input properly, in another words: num_wasted_threads=0.
473
    int num_wasted_threads =
474 475 476
        input_long_edge -
        CeilOrFloor<int, false>(input_long_edge, proposed_tile_long_edge) *
            proposed_tile_long_edge;
477

478 479
    int num_full_tiles = 
        CeilOrFloor<int, false>(input_long_edge, proposed_tile_long_edge);
480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512

    float cost = num_wasted_threads;

    if (cost <= lowest_cost) {
      tile_long_edge = proposed_tile_long_edge;
      tile_short_edge = tile_size_pair.second;
      lowest_cost = cost;
    }
    // break as we already find best tile size.
    if (cost == 0) break;
  }

  // The tile size we select should be match with input dim, long side to long
  // short side to short.
  // First set long side  as i if dim1 > Tile min size, then set dim2 as j.
  int select_tile_size_i =
      input_dims[1] >= kMinTileSize ? tile_long_edge : input_dims[1];
  int select_tile_size_j =
      input_dims[1] >= kMinTileSize ? input_dims[2] : tile_long_edge;

  // Check if i is long edge, if not set i as short.
  select_tile_size_i = select_tile_size_i == tile_long_edge
                           ? tile_long_edge
                           : std::min(select_tile_size_i, tile_short_edge);

  // Check if j is long edge, if not set j as short.
  select_tile_size_j = select_tile_size_j == tile_long_edge
                           ? tile_long_edge
                           : std::min(select_tile_size_j, tile_short_edge);

  // Here finally get proper long X short tile size.
  Dim3 input_dims_aligned = {
      input_dims[0],
513 514
      CeilOrFloor<int, true>(input_dims[1], select_tile_size_i),
      CeilOrFloor<int, true>(input_dims[2], select_tile_size_j),
515 516
  };

517
  IndexType total_tiles_count = input_dims_aligned[0];
518 519
  total_tiles_count *= input_dims_aligned[1];
  total_tiles_count *= input_dims_aligned[2];
520 521 522 523

  // Suppose T can be replaced by system builtin types
  using ElemType = typename SystemElemType<sizeof(T)>::type;

524
  NarrowDims2TransposeDispatch<ElemType, 32, 2, IndexType>::DoTranspose(
525 526 527 528 529 530
      d,
      select_tile_size_i,
      select_tile_size_j,
      total_tiles_count,
      reinterpret_cast<const ElemType*>(input),
      input_dims,
531 532 533 534 535
      reinterpret_cast<ElemType*>(output));
}

// This is for case that cannot do coalescing read and write.
// Or input is too small to split into tiles.
536 537
template <typename T, int pos0, int pos1, int pos2, typename IndexType = int>
__global__ void TransposeSimpleKernel(IndexType nthreads,
538 539 540
                                      const T* __restrict__ input,
                                      Dim3 input_dims,
                                      T* __restrict__ output) {
541 542 543 544 545
  Dim3 output_dims;
  output_dims[pos0] = input_dims[0];
  output_dims[pos1] = input_dims[1];
  output_dims[pos2] = input_dims[2];

546
  CUDA_KERNEL_LOOP_TYPE(output_index, nthreads, IndexType) {
547
    Index3 output_tensor_index =
548
        ConvertTensorIndex<IndexType>(output_index, output_dims);
549 550 551 552 553 554

    Index3 input_tensor_index;
    input_tensor_index[0] = output_tensor_index[pos0];
    input_tensor_index[1] = output_tensor_index[pos1];
    input_tensor_index[2] = output_tensor_index[pos2];

555
    IndexType input_index =
556
        FlatTensorIndex<IndexType>(input_tensor_index, input_dims);
557 558 559 560 561 562

    output[output_index] = input[input_index];
  }
}

// Here suppose convert all tensor to dim3, so just change dim1 and 2.
563
template <typename T, typename IndexType = int>
564 565 566 567
void SendSwapDim1And2InTranspose(const phi::GPUContext& d,
                                 const T* input,
                                 const Dim3& input_dims,
                                 T* output) {
568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583
  // Suppose tile size > 16
  static const int kMinTileSize = 16;
  static const int kMinNarrowTileSize = 96;

  bool large_tile =
      input_dims[1] >= kMinTileSize && input_dims[2] >= kMinTileSize;
  bool narrow_tile = input_dims[1] >= kMinNarrowTileSize ||
                     input_dims[2] >= kMinNarrowTileSize;
  if (large_tile) {
    // If input is large square, such as 32X32, use SM to do copy.
    // suppose 32 X 32 gives best performance, and 8 warp in block.
    constexpr int kTileSize = 32;
    constexpr int kNumThreads = 256;

    Dim3 input_dims_aligned = {
        input_dims[0],
584 585
        CeilOrFloor<int, true>(input_dims[1], kTileSize),
        CeilOrFloor<int, true>(input_dims[2], kTileSize),
586 587
    };

588
    IndexType total_tiles_count = input_dims_aligned[0];
589 590
    total_tiles_count *= input_dims_aligned[1];
    total_tiles_count *= input_dims_aligned[2];
591

592
    TilingSwapDim1And2<T, kNumThreads, kTileSize, kTileSize, IndexType>
593 594
        <<<total_tiles_count, kNumThreads, 0, d.stream()>>>(
            input, input_dims, output);
595 596 597 598 599

  } else if (narrow_tile) {
    // If input shape is like Rect, such as 2X100, use Narrow tile size.
    // It makes things complicated, because need to find a tile can coverr
    // input and also reach best coalescing.
600
    SwapDim1And2InNarrow<T, false, IndexType>(
601
        d, input, input_dims, output, kMinTileSize);
602 603
  } else {
    // If input shape is small, such as 8X8, just do simple copy
604
    IndexType total_elements = input_dims[0];
605 606
    total_elements *= input_dims[1];
    total_elements *= input_dims[2];
H
hong 已提交
607
    auto config = phi::backends::gpu::GetGpuLaunchConfig1D(d, total_elements);
608
    TransposeSimpleKernel<T, 0, 2, 1, IndexType>
609 610
        <<<config.block_per_grid.x, config.thread_per_block.x, 0, d.stream()>>>(
            total_elements, input, input_dims, output);
611 612 613
  }
}

614
template <typename T, typename IndexType = int>
615
struct SwapDim1And2InTranspose {
H
hong 已提交
616
  typedef phi::GPUContext Device;
617 618 619 620
  void operator()(const Device& d,
                  const T* in,
                  const std::vector<int>& combined_dims,
                  T* out) {
621 622 623
    Dim3 input_dims = {static_cast<int>(combined_dims[0]),
                       static_cast<int>(combined_dims[1]),
                       static_cast<int>(combined_dims[2])};
624
    SendSwapDim1And2InTranspose<T, IndexType>(d, in, input_dims, out);
625 626 627
  }
};

628
template <typename T, typename IndexType = int>
629
struct SwapDim0And2InTranspose {
H
hong 已提交
630
  typedef phi::GPUContext Device;
631 632 633 634
  void operator()(const Device& d,
                  const T* in,
                  const std::vector<int>& combined_dims,
                  T* out) {
635 636 637 638
    Dim3 input_dims = {static_cast<int>(combined_dims[0]),
                       static_cast<int>(combined_dims[1]),
                       static_cast<int>(combined_dims[2])};

639
    IndexType total_size = combined_dims[0];
640 641
    total_size *= combined_dims[1];
    total_size *= combined_dims[2];
H
hong 已提交
642
    auto config = phi::backends::gpu::GetGpuLaunchConfig1D(d, total_size);
643

644
    TransposeSimpleKernel<T, 2, 1, 0, IndexType>
645 646
        <<<config.block_per_grid.x, config.thread_per_block.x, 0, d.stream()>>>(
            total_size, in, input_dims, out);
647 648 649 650 651
  }
};

// This function is to combine dimension. fox example:
// (0, 1, 3, 2) --> (0, 2, 1)
652
inline void CombineTransposeDim3(const DDim& shape,
653 654
                                 const std::vector<int>& perm,
                                 std::vector<int>* new_perm,
655
                                 DDim* new_dims) {
656 657
  PADDLE_ENFORCE_EQ(shape.size(),
                    perm.size(),
658
                    phi::errors::InvalidArgument(
659 660
                        " shape should have the save dim with perm, but"
                        " received shape size is:%d, perm size is:%d.",
661 662
                        shape.size(),
                        perm.size()));
663 664 665 666 667 668 669

  std::vector<int> dim_vec;
  if (shape.size() == 1) {
    // If input dimension is already 1, no need to combine dim.
    new_perm->resize(1);
    (*new_perm)[0] = perm[0];
    dim_vec.push_back(shape[0]);
670
    *new_dims = phi::make_ddim(dim_vec);
671 672 673
    return;
  }
  std::vector<int> new_dim_pos(shape.size(), -1);
674
  std::vector<int64_t> combined_dims(shape.size(), 0);
675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704
  int cur_head = perm[0];
  new_dim_pos[cur_head] = 0;
  combined_dims[0] = shape[cur_head];
  int dim_idx = 0;
  for (int perm_idx = 1; perm_idx < shape.size(); ++perm_idx) {
    // combine consecutive dimensions.
    if (cur_head + 1 == perm[perm_idx]) {
      cur_head = perm[perm_idx];
      combined_dims[dim_idx] *= shape[cur_head];
    } else {
      // Else start a new dimension.
      cur_head = perm[perm_idx];
      dim_idx++;
      new_dim_pos[cur_head] = dim_idx;
      combined_dims[dim_idx] = shape[cur_head];
    }
  }

  new_perm->resize(dim_idx + 1);

  dim_idx = 0;
  for (int i = 0; i < new_dim_pos.size(); ++i) {
    if (new_dim_pos[i] >= 0) {
      int new_perm_idx = new_dim_pos[i];
      (*new_perm)[dim_idx] = new_perm_idx;
      dim_vec.push_back(combined_dims[new_perm_idx]);
      dim_idx++;
    }
  }

705
  *new_dims = phi::make_ddim(dim_vec);
706 707
}

708
template <typename T, typename IndexType = int>
709
struct TransposeSimple {
710
  static bool run(const phi::GPUContext& ctx,
711
                  const phi::DenseTensor& in,
712
                  const std::vector<int32_t> perm,
713
                  phi::DenseTensor* out) {
714 715
    // First reduce the dimensions of the input tensor if possible.
    std::vector<int> new_perm;
716
    DDim new_dims;
717 718 719 720
    CombineTransposeDim3(in.dims(), perm, &new_perm, &new_dims);

    // Only use tile copy GPU kernel when dimension is 2 or 3.
    int dims = new_dims.size();
721
    std::vector<int> new_dim_vec = phi::vectorize<int>(new_dims);
722 723 724 725 726 727 728 729 730
    if (dims < 2 || dims > 3) return false;
    auto in_data = in.data<T>();
    auto out_data = out->data<T>();
    // In most cases, dim will not greater than 3 after combine.
    switch (dims) {
      case 2:
        if (new_perm[0] == 1 && new_perm[1] == 0) {
          // Add the first dimension size as 1.
          new_dim_vec.insert(new_dim_vec.begin(), 1);
731
          SwapDim1And2InTranspose<T, IndexType>()(
732
              ctx, in_data, new_dim_vec, out_data);
733 734 735 736 737 738
          return true;
        }
        break;
      case 3:
        // In this case, suppose we can do coalescing read and write in tile.
        if (new_perm == std::vector<int>({0, 2, 1})) {
739
          SwapDim1And2InTranspose<T, IndexType>()(
740
              ctx, in_data, new_dim_vec, out_data);
741 742 743 744 745 746
          return true;
        } else if (new_perm == std::vector<int>({2, 1, 0})) {
          // Maybe can optimize later, find a way to do coalescing memory copy.
          // But I think it depends on the data size. If span is not large,
          // maybe
          // can do coalescing.
747
          SwapDim0And2InTranspose<T, IndexType>()(
748
              ctx, in_data, new_dim_vec, out_data);
749 750 751 752 753 754 755 756 757 758 759 760
          return true;
        } else {
          return false;
        }
        break;
      default:
        return false;
    }
    return false;
  }
};

761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794
template <int N, typename T>
class IdxHelper {
 public:
  IdxHelper() {}
  explicit IdxHelper(const T* dims) {
    for (int i = N - 1; i >= 0; --i) {
      stride_[i] = i < (N - 1) ? dims[i + 1] * stride_[i + 1] : 1;
    }
  }

  __device__ inline T GetStride(int idx) const { return stride_[idx]; }

  __device__ inline void GetIndexFromOffset(T offset, T* index) const {
    T remaining = offset;
#pragma unroll
    for (int i = 0; i < N - 1; ++i) {
      const T idx = remaining / stride_[i];
      remaining -= idx * stride_[i];
      index[i] = idx;
    }
    index[N - 1] = remaining;
  }

 private:
  T stride_[N];
};

template <int N>
class IdxHelper<N, uint32_t> {
 public:
  IdxHelper() {}
  explicit IdxHelper(const uint32_t* dims) {
    for (int i = N - 1; i >= 0; --i) {
      uint32_t value = i < (N - 1) ? dims[i + 1] * stride_[i + 1] : 1;
795
      divmoder_[i] = phi::kps::details::FastDivMod(value);
796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815
      stride_[i] = value;
    }
  }

  __device__ inline uint32_t GetStride(int idx) const { return stride_[idx]; }

  __device__ inline void GetIndexFromOffset(uint32_t offset,
                                            uint32_t* index) const {
    uint32_t remaining = offset;
#pragma unroll
    for (int i = 0; i < N - 1; ++i) {
      uint32_t idx = divmoder_[i].Div(remaining);
      index[i] = idx;
      remaining -= idx * stride_[i];
    }
    index[N - 1] = remaining;
  }

 private:
  uint32_t stride_[N];
816
  phi::kps::details::FastDivMod divmoder_[N];
817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854
};

// Transform index between memory offset and shape coodinate.
template <typename T, int N>
class IdxAndOffsetHelper {
 public:
  IdxAndOffsetHelper() {}
  ~IdxAndOffsetHelper() = default;

  explicit IdxAndOffsetHelper(const T* dims) {
    index_helper = IdxHelper<N, T>(dims);
  }

  __device__ inline T IndexToOffset(const T* index) const {
    T offset = 0;
#pragma unroll
    for (int i = 0; i < N - 1; ++i) {
      offset += index[i] * index_helper.GetStride(i);
    }
    offset += index[N - 1];
    return offset;
  }

  __device__ inline void OffsetToIndex(T offset, T* index) const {
    index_helper.GetIndexFromOffset(offset, index);
  }

 private:
  IdxHelper<N, T> index_helper;
};

template <size_t Rank, typename IndexT>
struct PermuteParams {
 public:
  IdxAndOffsetHelper<IndexT, Rank> src_index_helper;
  IdxAndOffsetHelper<IndexT, Rank> dst_index_helper;
  int perm[Rank]{};

L
limingshu 已提交
855
  explicit PermuteParams(const std::vector<int64_t>& dims,
856
                         const std::vector<int>& perm_) {
L
limingshu 已提交
857 858 859 860
    IndexT dst_dims[Rank];
    IndexT src_dims[Rank];
    for (auto i = 0; i < Rank; ++i) {
      src_dims[i] = dims[i];
861 862 863 864
      dst_dims[i] = dims[perm_[i]];
      perm[i] = perm_[i];
    }
    dst_index_helper = IdxAndOffsetHelper<IndexT, Rank>(dst_dims);
L
limingshu 已提交
865
    src_index_helper = IdxAndOffsetHelper<IndexT, Rank>(src_dims);
866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898
  }
};

// A special kernel for target case, both vectorized read and write supported.
template <typename T, typename IndexT, int VecSize, int Rank>
__global__ void VectorizedPermuteKernel(PermuteParams<Rank, IndexT> params,
                                        const size_t count,
                                        const T* __restrict__ src_data,
                                        T* dst_data) {
  using VecT = phi::AlignedVector<T, VecSize>;
  IndexT src_index[Rank];
  IndexT dst_index[Rank];

  const VecT* __restrict__ src =
      reinterpret_cast<const VecT* __restrict__>(src_data);
  VecT* dst = reinterpret_cast<VecT*>(dst_data);

  IndexT tid = blockIdx.x * blockDim.x + threadIdx.x;
  for (IndexT i = tid; i < count; i += blockDim.x * gridDim.x) {
    params.dst_index_helper.OffsetToIndex(i, dst_index);

#pragma unroll
    for (int j = 0; j < Rank; ++j) {
      src_index[params.perm[j]] = dst_index[j];
    }
    IndexT src_offset = params.src_index_helper.IndexToOffset(src_index);
    dst[i] = src[src_offset];
  }
}

// A general kernel for normal case, only support vectorized write.
template <typename T, typename IndexT, int VecSize, int Rank>
__global__ void GeneralPermuteKernel(PermuteParams<Rank, IndexT> params,
899 900
                                     const T* __restrict__ src,
                                     T* dst,
901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953
                                     const size_t main_cnt,
                                     const size_t tail_cnt,
                                     const size_t offset) {
  using VecT = phi::AlignedVector<T, VecSize>;
  VecT* vec_dst = reinterpret_cast<VecT*>(dst);

  IndexT src_index[VecSize][Rank];
  IndexT dst_index[VecSize][Rank];

  // Avoid read perm data both in 2 load process.
  __shared__ int perm[Rank];
  if (threadIdx.x < Rank) {
    perm[threadIdx.x] = params.perm[threadIdx.x];
  }
  __syncthreads();

  // Vectorized load data.
  IndexT tid = blockIdx.x * blockDim.x + threadIdx.x;
  for (IndexT idx = tid; idx < main_cnt; idx += blockDim.x * gridDim.x) {
    VecT vec_data;
    IndexT vec_idx = idx * VecSize;

#pragma unroll
    for (int i = 0; i < VecSize; ++i) {
      params.dst_index_helper.OffsetToIndex(vec_idx + i, dst_index[i]);

#pragma unroll
      for (int j = 0; j < Rank; ++j) {
        src_index[i][perm[j]] = dst_index[i][j];
      }
      IndexT src_offset = params.src_index_helper.IndexToOffset(src_index[i]);
      vec_data[i] = src[src_offset];
    }
    vec_dst[idx] = vec_data;
  }

  // Singularized load data.
  if (tid < tail_cnt) {
    IndexT idx = tid + offset;
    params.dst_index_helper.OffsetToIndex(idx, dst_index[0]);

#pragma unroll
    for (int j = 0; j < Rank; ++j) {
      src_index[0][perm[j]] = dst_index[0][j];
    }
    IndexT src_offset = params.src_index_helper.IndexToOffset(src_index[0]);
    dst[idx] = src[src_offset];
  }
}

// A Gerneral permute method that drectly find the dst data
// coordinate in the source data.
template <typename T, typename IndexT, int VecSize, int Rank>
954 955
inline void LaunchPermuteKernel(const phi::GPUContext& ctx,
                                const IndexT count,
956
                                const PermuteType perm_type,
L
limingshu 已提交
957
                                const std::vector<int64_t>& dims,
958 959
                                const std::vector<int>& perm,
                                const T* src,
960 961 962 963
                                T* dst) {
  size_t main_count = count / VecSize;
  auto config = phi::backends::gpu::GetGpuLaunchConfig1D(ctx, main_count);

L
limingshu 已提交
964
  if (perm_type == PermuteType::kGeneralPermute) {
965 966
    size_t tail_count = count - main_count * VecSize;
    size_t offset = count - tail_count;
L
limingshu 已提交
967 968
    auto params = PermuteParams<Rank, IndexT>(dims, perm);

969 970 971
    GeneralPermuteKernel<T, IndexT, VecSize, Rank>
        <<<config.GetGridSize(), config.GetBlockSize(), 0, ctx.stream()>>>(
            params, src, dst, main_count, tail_count, offset);
972
  } else {
L
limingshu 已提交
973 974 975 976
    std::vector<int64_t> vec_dims(dims);
    vec_dims[dims.size() - 1] /= VecSize;
    auto params = PermuteParams<Rank, IndexT>(vec_dims, perm);

977 978 979
    VectorizedPermuteKernel<T, IndexT, VecSize, Rank>
        <<<config.GetGridSize(), config.GetBlockSize(), 0, ctx.stream()>>>(
            params, main_count, src, dst);
980 981 982 983 984 985 986
  }
}

template <typename T, typename IndexT, int VecSize>
inline void LaunchPermuteRankDispatch(const phi::GPUContext& ctx,
                                      const IndexT count,
                                      const PermuteType perm_type,
L
limingshu 已提交
987
                                      const std::vector<int64_t>& dims,
988
                                      const std::vector<int>& perm,
989 990 991 992 993 994 995
                                      const T* src,
                                      T* dst) {
#define CALL_DISPATCH_RANK(rank)                      \
  case rank: {                                        \
    LaunchPermuteKernel<T, IndexT, VecSize, rank>(    \
        ctx, count, perm_type, dims, perm, src, dst); \
    break;                                            \
996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011
  }

  switch (dims.size()) {
    CALL_DISPATCH_RANK(1);
    CALL_DISPATCH_RANK(2);
    CALL_DISPATCH_RANK(3);
    CALL_DISPATCH_RANK(4);
    CALL_DISPATCH_RANK(5);
    CALL_DISPATCH_RANK(6);
    CALL_DISPATCH_RANK(7);
    CALL_DISPATCH_RANK(8);
    CALL_DISPATCH_RANK(9);
  }
#undef CALL_DISPATCH_RANK
}

L
limingshu 已提交
1012
// Aim at transposing the last 2 dimensions. Reference from
1013 1014 1015
// https://developer.nvidia.com/blog/efficient-matrix-transpose-cuda-cc/
template <typename T, typename IndexT, int VecSize>
__global__ void BatchTransposeKernel(const T* __restrict__ src_data,
1016 1017
                                     T* dst_data,
                                     IndexT rows,
L
limingshu 已提交
1018 1019 1020
                                     IndexT cols,
                                     IndexT round_tile_rows,
                                     IndexT round_tile_cols) {
1021
  using VecT = phi::AlignedVector<T, VecSize>;
L
limingshu 已提交
1022 1023 1024
  constexpr int kShareCol = kTileSize + 1;
  __shared__ VecT v_shared[kTileSize * kShareCol];
  T* s_shared = reinterpret_cast<T*>(v_shared);
1025 1026

  // Vectorized load data from src into shared memory. [rows, cols]
L
limingshu 已提交
1027
  const VecT* __restrict__ vec_src =
1028 1029
      reinterpret_cast<const VecT* __restrict__>(src_data);

L
limingshu 已提交
1030 1031
  IndexT col_in_matrix = blockIdx.x * kTileSize + threadIdx.x;
  IndexT offset = blockIdx.z * rows * cols;
1032

L
limingshu 已提交
1033 1034 1035 1036 1037 1038 1039 1040 1041
  if (col_in_matrix < cols) {
    int row_range = (blockIdx.y < round_tile_rows)
                        ? kTileSize
                        : (rows - kTileSize * round_tile_rows);
#pragma unroll
    for (int tile_y = threadIdx.y; tile_y < row_range; tile_y += kBlockRows) {
      IndexT row_in_matrix = tile_y + blockIdx.y * kTileSize;
      v_shared[tile_y * kShareCol + threadIdx.x] =
          vec_src[offset + row_in_matrix * cols + col_in_matrix];
1042 1043 1044
    }
  }

L
limingshu 已提交
1045 1046
  // Write data from shared memory into dst and
  // dst_cols = rows, dst_rows = cols * Vecsize
1047 1048 1049 1050
  col_in_matrix = blockIdx.y * kTileSize + threadIdx.x;
  offset = offset * VecSize + col_in_matrix;
  __syncthreads();

L
limingshu 已提交
1051 1052 1053 1054
  if (col_in_matrix < /*dst_cols=*/rows) {
    int col_range = (blockIdx.x < round_tile_cols)
                        ? kTileSize
                        : (cols - kTileSize * round_tile_cols);
1055
#pragma unroll
L
limingshu 已提交
1056 1057 1058 1059 1060 1061 1062
    for (IndexT tile_y = threadIdx.y; tile_y < col_range;
         tile_y += kBlockRows) {
#pragma unroll
      for (int i = 0; i < VecSize; ++i) {
        IndexT row_in_matrix = (tile_y + blockIdx.x * kTileSize) * VecSize + i;
        IndexT shared_idx = (tile_y + threadIdx.x * kShareCol) * VecSize + i;
        dst_data[offset + row_in_matrix * rows] = s_shared[shared_idx];
1063 1064 1065 1066 1067
      }
    }
  }
}

L
limingshu 已提交
1068 1069
// With the byte limitation of shared_memory, the VecSize shall be
// restricted for the type whose byte-size is less than 4.
1070 1071 1072
template <typename T,
          typename IndexT,
          int Size,
L
limingshu 已提交
1073
          int VecSize = (sizeof(T) > 4 ? 1 : Size)>
1074
inline void LaunchTransposeKernel(const phi::GPUContext& ctx,
L
limingshu 已提交
1075
                                  const std::vector<int64_t>& dims,
1076
                                  const T* src,
1077 1078 1079 1080
                                  T* dst) {
  auto rank = dims.size();
  IndexT num_batches = (rank == 2) ? 1 : dims[0];
  IndexT rows = dims[rank - 2];
L
limingshu 已提交
1081
  IndexT cols = dims[rank - 1] / VecSize;
1082 1083 1084 1085 1086 1087
  IndexT num_tile_rows = (rows + kTileSize - 1) / kTileSize;
  IndexT num_tile_cols = (cols + kTileSize - 1) / kTileSize;

  dim3 blocks(num_tile_cols, num_tile_rows, num_batches);
  dim3 threads(kTileSize, kBlockRows, 1);

1088
  BatchTransposeKernel<T, IndexT, VecSize>
L
limingshu 已提交
1089 1090
      <<<blocks, threads, 0, ctx.stream()>>>(
          src, dst, rows, cols, num_tile_rows - 1, num_tile_cols - 1);
1091 1092 1093 1094 1095 1096
}

template <typename T, typename IndexT>
inline void LaunchWithDispatchVecSize(const phi::GPUContext& ctx,
                                      const int vec_size,
                                      const PermuteType perm_type,
L
limingshu 已提交
1097
                                      const std::vector<int64_t>& dims,
1098
                                      const std::vector<int>& perm,
1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110
                                      const T* src,
                                      T* dst,
                                      IndexT count) {
#define CALL_DISPATCH_VEC_SIZE(vec_size)                               \
  case vec_size: {                                                     \
    if (perm_type == PermuteType::kTranspose) {                        \
      LaunchTransposeKernel<T, IndexT, vec_size>(ctx, dims, src, dst); \
    } else {                                                           \
      LaunchPermuteRankDispatch<T, IndexT, vec_size>(                  \
          ctx, count, perm_type, dims, perm, src, dst);                \
    }                                                                  \
    break;                                                             \
1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126
  }

  switch (vec_size) {
    CALL_DISPATCH_VEC_SIZE(1);
    CALL_DISPATCH_VEC_SIZE(2);
    CALL_DISPATCH_VEC_SIZE(4);
    default: {
      PADDLE_THROW(phi::errors::Unimplemented(
          "Unsupported vectorized size: %d !", vec_size));
      break;
    }
  }
#undef CALL_DISPATCH_VEC_SIZE
}

template <typename DeviceContext, typename T>
L
limingshu 已提交
1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142
inline void PermuteAndTranspose(const int rank,
                                const DeviceContext& ctx,
                                const phi::DenseTensor& in,
                                phi::DenseTensor* out,
                                const std::vector<int32_t>& perm) {
  const int64_t numel = in.numel();
  auto classifier =
      TranposeTypeClassifier<T>(ctx.GetSMCount(),
                                rank,
                                numel,
                                perm,
                                phi::vectorize<int64_t>(in.dims()),
                                in.data<T>(),
                                out->data<T>());

  if (classifier.GetPermType() == PermuteType::kCopy) {
1143
    // If perm is [0,1,2,3], then just operate a DtoD copy.
L
limingshu 已提交
1144 1145 1146 1147 1148
    phi::backends::gpu::GpuMemcpyAsync(out->data<T>(),
                                       in.data<T>(),
                                       numel * sizeof(T),
                                       phi::gpuMemcpyDeviceToDevice,
                                       ctx.stream());
1149
  } else {
L
limingshu 已提交
1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169
    if (numel < std::numeric_limits<int>::max()) {
      LaunchWithDispatchVecSize<T, int>(ctx,
                                        classifier.GetVecSize(),
                                        classifier.GetPermType(),
                                        classifier.GetSrcDims(),
                                        classifier.GetPerm(),
                                        in.data<T>(),
                                        out->data<T>(),
                                        static_cast<int>(numel));
    } else {
      int64_t cnt = static_cast<int64_t>(numel);
      LaunchWithDispatchVecSize<T, int64_t>(ctx,
                                            classifier.GetVecSize(),
                                            classifier.GetPermType(),
                                            classifier.GetSrcDims(),
                                            classifier.GetPerm(),
                                            in.data<T>(),
                                            out->data<T>(),
                                            static_cast<int64_t>(numel));
    }
1170 1171 1172 1173
  }
}

template <typename T>
1174
void TransposeGPUKernelDriver(const phi::GPUContext& ctx,
1175
                              const phi::DenseTensor& in,
1176
                              const std::vector<int32_t>& perm,
1177
                              phi::DenseTensor* out) {
1178
  const int rank = perm.size();
1179 1180
  int64_t numel = in.numel();
  bool ret{false};
1181
  if (numel >= std::numeric_limits<int32_t>::max()) {
1182 1183 1184 1185
    ret = TransposeSimple<T, int64_t>::run(ctx, in, perm, out);
  } else {
    ret = TransposeSimple<T>::run(ctx, in, perm, out);
  }
1186
  if (!ret) {
1187 1188
    auto* tuner = phi::autotune::MakeTransposeTuner<T>(
        funcs::TransCompute<phi::GPUContext, T>);
L
limingshu 已提交
1189
    tuner->AddCallBack(PermuteAndTranspose<phi::GPUContext, T>);
1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203

    size_t key = phi::autotune::TransposeKey(
        phi::vectorize(in.dims()),
        perm,
        paddle::experimental::CppTypeToDataType<T>::Type());

    tuner->Run(ctx,
               phi::autotune::AlgorithmType::kTranspose,
               key,
               rank,
               ctx,
               in,
               out,
               perm);
1204 1205 1206
  }
}

1207 1208
}  // namespace funcs
}  // namespace phi