squeeze_op.h 3.6 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17
/* Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserved.

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

    http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */

#pragma once

#include <vector>
L
Leo Chen 已提交
18

19 20
#include "paddle/fluid/framework/op_registry.h"
#include "paddle/fluid/platform/device_context.h"
21 22
#include "paddle/phi/kernels/funcs/blas/blas.h"
#include "paddle/phi/kernels/funcs/math_function.h"
23 24 25 26

namespace paddle {
namespace operators {

L
Leo Chen 已提交
27 28 29
framework::DDim GetOutputShape(const std::vector<int> squeeze_dims,
                               const framework::DDim &in_dims, bool is_runtime);

30 31 32 33 34 35 36 37 38
template <typename DeviceContext, typename T>
class SqueezeKernel : public framework::OpKernel<T> {
 public:
  void Compute(const framework::ExecutionContext &context) const override {
    auto *in = context.Input<framework::LoDTensor>("X");
    auto *out = context.Output<framework::LoDTensor>("Out");

    auto &axes = context.Attr<std::vector<int>>("axes");
    auto x_dims = in->dims();
L
Leo Chen 已提交
39
    auto out_dims = GetOutputShape(axes, x_dims, true);
40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73

    out->mutable_data(context.GetPlace(), in->type());
    framework::TensorCopy(
        *in, context.GetPlace(),
        context.template device_context<platform::DeviceContext>(), out);
    out->Resize(out_dims);
  }
};

template <typename DeviceContext, typename T>
class SqueezeGradKernel : public framework::OpKernel<T> {
 public:
  void Compute(const framework::ExecutionContext &ctx) const override {
    auto *d_out =
        ctx.Input<framework::LoDTensor>(framework::GradVarName("Out"));
    auto *d_x = ctx.Output<framework::LoDTensor>(framework::GradVarName("X"));
    auto in_dims = ctx.Input<framework::LoDTensor>("X")->dims();

    d_x->mutable_data(ctx.GetPlace(), d_out->type());
    framework::TensorCopySync(*d_out, ctx.GetPlace(), d_x);
    d_x->Resize(in_dims);
  }
};

template <typename DeviceContext, typename T>
class Squeeze2Kernel : public framework::OpKernel<T> {
 public:
  void Compute(const framework::ExecutionContext &context) const override {
    auto *out = context.Output<framework::LoDTensor>("Out");
    auto *in = context.Input<framework::LoDTensor>("X");

    auto &axes = context.Attr<std::vector<int>>("axes");

    auto x_dims = in->dims();
L
Leo Chen 已提交
74
    auto out_dims = GetOutputShape(axes, x_dims, true);
75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93

    out->mutable_data(context.GetPlace(), in->type());
    framework::TensorCopy(
        *in, context.GetPlace(),
        context.template device_context<platform::DeviceContext>(), out);
    out->Resize(out_dims);
  }
};

template <typename DeviceContext, typename T>
class Squeeze2GradKernel : public framework::OpKernel<T> {
 public:
  void Compute(const framework::ExecutionContext &ctx) const override {
    auto *d_out =
        ctx.Input<framework::LoDTensor>(framework::GradVarName("Out"));
    auto *d_x = ctx.Output<framework::LoDTensor>(framework::GradVarName("X"));
    // auto in_dims = d_x->dims();

    auto xshape_dims = ctx.Input<framework::LoDTensor>("XShape")->dims();
94
    auto x_dims = phi::slice_ddim(xshape_dims, 1, xshape_dims.size());
95 96 97 98 99 100 101 102 103

    d_x->mutable_data(ctx.GetPlace(), d_out->type());
    framework::TensorCopySync(*d_out, ctx.GetPlace(), d_x);
    d_x->Resize(x_dims);
  }
};

}  // namespace operators
}  // namespace paddle