spp_op.h 8.2 KB
Newer Older
1
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserved.
S
sweetsky0901 已提交
2 3 4 5 6 7 8 9 10 11 12 13 14 15

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
Indicesou may obtain a copy of the License at

    http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */

#pragma once
16 17
#include <string>
#include <vector>
Y
Yi Wang 已提交
18
#include "paddle/fluid/framework/op_registry.h"
F
From00 已提交
19
#include "paddle/fluid/framework/phi_utils.h"
Y
Yi Wang 已提交
20
#include "paddle/fluid/operators/strided_memcpy.h"
21
#include "paddle/phi/kernels/funcs/math_function.h"
F
From00 已提交
22
#include "paddle/phi/kernels/funcs/pooling.h"
S
sweetsky0901 已提交
23 24 25

namespace paddle {
namespace operators {
S
sweetsky0901 已提交
26
template <typename DeviceContext, typename T>
S
sweetsky0901 已提交
27 28 29 30 31 32
class SppKernel : public framework::OpKernel<T> {
 public:
  void Compute(const framework::ExecutionContext& context) const override {
    const framework::Tensor* in_x = context.Input<framework::Tensor>("X");
    auto* out = context.Output<framework::Tensor>("Out");
    int pyramid_height = context.template Attr<int>("pyramid_height");
S
sweetsky0901 已提交
33 34
    std::string pooling_type =
        context.template Attr<std::string>("pooling_type");
S
sweetsky0901 已提交
35
    out->mutable_data<T>(context.GetPlace());
36
    auto out_stride = phi::stride(out->dims());
S
sweetsky0901 已提交
37 38 39 40 41
    int input_h = in_x->dims()[2];
    int input_w = in_x->dims()[3];
    size_t output_offset = 0;
    for (int p = 0; p < pyramid_height; ++p) {
      int bins = std::pow(2, p);
S
sweetsky0901 已提交
42 43 44 45 46 47
      int kernel_size_h = std::ceil(input_h / static_cast<double>(bins));
      int kernel_size_w = std::ceil(input_w / static_cast<double>(bins));
      int padding_h = (kernel_size_h * bins - input_h + 1) / 2;
      int padding_w = (kernel_size_w * bins - input_w + 1) / 2;
      std::vector<int> kernel_size({kernel_size_h, kernel_size_w});
      std::vector<int> strides({kernel_size_h, kernel_size_w});
S
sweetsky0901 已提交
48 49
      std::vector<int> paddings({padding_h, padding_w});
      // pooling output shape
S
sweetsky0901 已提交
50
      framework::Tensor out_level;
S
sweetsky0901 已提交
51 52
      std::vector<int64_t> output_shape_vec(
          {in_x->dims()[0], in_x->dims()[1], bins, bins});
53
      framework::DDim output_shape(phi::make_ddim(output_shape_vec));
S
sweetsky0901 已提交
54 55
      out_level.mutable_data<T>(output_shape, context.GetPlace());
      // pooling
S
sweetsky0901 已提交
56
      if (pooling_type == "max") {
F
From00 已提交
57 58 59 60 61
        phi::funcs::Pool2dFunctor<
            typename framework::ConvertToPhiContext<DeviceContext>::TYPE,
            phi::funcs::MaxPool<T>, T>
            pool_forward;
        phi::funcs::MaxPool<T> max_process;
S
sweetsky0901 已提交
62
        pool_forward(context.template device_context<DeviceContext>(), *in_x,
63 64
                     kernel_size, strides, paddings, true, false, &out_level,
                     max_process);
S
sweetsky0901 已提交
65
      } else if (pooling_type == "avg") {
F
From00 已提交
66 67 68 69 70
        phi::funcs::Pool2dFunctor<
            typename framework::ConvertToPhiContext<DeviceContext>::TYPE,
            phi::funcs::AvgPool<T>, T>
            pool_forward;
        phi::funcs::AvgPool<T> avg_process;
S
sweetsky0901 已提交
71
        pool_forward(context.template device_context<DeviceContext>(), *in_x,
72 73
                     kernel_size, strides, paddings, true, false, &out_level,
                     avg_process);
S
sweetsky0901 已提交
74
      }
S
sweetsky0901 已提交
75 76 77 78 79
      // flatten pooling output shape
      int output_flatten_w = in_x->dims()[1] * bins * bins;
      std::vector<int64_t> output_flatten_shape_vec(
          {in_x->dims()[0], output_flatten_w});
      framework::DDim output_flatten_shape(
80
          phi::make_ddim(output_flatten_shape_vec));
S
sweetsky0901 已提交
81
      out_level.Resize(output_flatten_shape);
S
sweetsky0901 已提交
82
      // concat
83
      auto out_level_stride = phi::stride(out_level.dims());
S
sweetsky0901 已提交
84 85
      StridedMemcpy<T>(context.template device_context<DeviceContext>(),
                       out_level.data<T>(), out_level_stride, out_level.dims(),
S
sweetsky0901 已提交
86
                       out_stride, out->data<T>() + output_offset);
S
sweetsky0901 已提交
87
      output_offset += out_level.dims()[1] * out_level_stride[1];
S
sweetsky0901 已提交
88 89 90
    }
  }
};
S
sweetsky0901 已提交
91
template <typename DeviceContext, typename T>
S
sweetsky0901 已提交
92 93 94 95 96 97 98 99 100
class SppGradKernel : public framework::OpKernel<T> {
 public:
  void Compute(const framework::ExecutionContext& context) const override {
    const framework::Tensor* in_x = context.Input<framework::Tensor>("X");
    const framework::Tensor* out = context.Input<framework::Tensor>("Out");
    const framework::Tensor* out_grad =
        context.Input<framework::Tensor>(framework::GradVarName("Out"));
    framework::Tensor* in_x_grad =
        context.Output<framework::Tensor>(framework::GradVarName("X"));
S
sweetsky0901 已提交
101
    int pyramid_height = context.template Attr<int>("pyramid_height");
S
sweetsky0901 已提交
102 103
    std::string pooling_type =
        context.template Attr<std::string>("pooling_type");
S
sweetsky0901 已提交
104
    auto& device_ctx = context.template device_context<DeviceContext>();
F
From00 已提交
105 106 107
    phi::funcs::SetConstant<
        typename framework::ConvertToPhiContext<DeviceContext>::TYPE, T>
        zero;
S
sweetsky0901 已提交
108 109
    in_x_grad->mutable_data<T>(context.GetPlace());
    zero(device_ctx, in_x_grad, static_cast<T>(0));
110
    auto out_stride = phi::stride(out->dims());
S
sweetsky0901 已提交
111 112 113 114 115
    int input_h = in_x->dims()[2];
    int input_w = in_x->dims()[3];
    size_t out_offset = 0;
    for (int p = 0; p < pyramid_height; ++p) {
      int bins = std::pow(2, p);
S
sweetsky0901 已提交
116 117 118 119 120 121
      int kernel_size_h = std::ceil(input_h / static_cast<double>(bins));
      int kernel_size_w = std::ceil(input_w / static_cast<double>(bins));
      int padding_h = (kernel_size_h * bins - input_h + 1) / 2;
      int padding_w = (kernel_size_w * bins - input_w + 1) / 2;
      std::vector<int> kernel_size({kernel_size_h, kernel_size_w});
      std::vector<int> strides({kernel_size_h, kernel_size_w});
S
sweetsky0901 已提交
122
      std::vector<int> paddings({padding_h, padding_w});
S
sweetsky0901 已提交
123
      // split out and outgrad  ...  to flatten
S
sweetsky0901 已提交
124 125
      framework::Tensor out_level;
      framework::Tensor outgrad_level;
S
sweetsky0901 已提交
126 127 128
      int out_flatten_w = in_x->dims()[1] * bins * bins;
      std::vector<int64_t> out_flatten_shape_vec(
          {in_x->dims()[0], out_flatten_w});
129
      framework::DDim out_flatten_shape(phi::make_ddim(out_flatten_shape_vec));
S
sweetsky0901 已提交
130 131
      out_level.mutable_data<T>(out_flatten_shape, context.GetPlace());
      outgrad_level.mutable_data<T>(out_flatten_shape, context.GetPlace());
132
      auto flatten_stride = phi::stride(out_level.dims());
S
sweetsky0901 已提交
133
      // memcpy
S
sweetsky0901 已提交
134 135 136
      StridedMemcpy<T>(context.template device_context<DeviceContext>(),
                       out->data<T>() + out_offset, out_stride,
                       out_level.dims(), flatten_stride, out_level.data<T>());
S
sweetsky0901 已提交
137

S
sweetsky0901 已提交
138
      StridedMemcpy<T>(context.template device_context<DeviceContext>(),
S
sweetsky0901 已提交
139
                       out_grad->data<T>() + out_offset, out_stride,
S
sweetsky0901 已提交
140 141 142
                       outgrad_level.dims(), flatten_stride,
                       outgrad_level.data<T>());
      out_offset += out_level.dims()[1] * out_stride[1];
S
sweetsky0901 已提交
143
      // flatten backward to nchw
S
sweetsky0901 已提交
144

S
sweetsky0901 已提交
145
      std::vector<int64_t> out_shape_vec({in_x->dims()[0], in_x->dims()[1]});
S
sweetsky0901 已提交
146 147 148 149
      out_shape_vec.push_back(
          (input_h - kernel_size_h + 2 * padding_h) / kernel_size_h + 1);
      out_shape_vec.push_back(
          (input_w - kernel_size_w + 2 * padding_w) / kernel_size_w + 1);
150
      framework::DDim out_shape(phi::make_ddim(out_shape_vec));
S
sweetsky0901 已提交
151
      out_level.ShareDataWith(out_level);
S
sweetsky0901 已提交
152
      out_level.Resize(out_shape);
S
sweetsky0901 已提交
153
      outgrad_level.ShareDataWith(outgrad_level);
S
sweetsky0901 已提交
154
      outgrad_level.Resize(out_shape);
S
sweetsky0901 已提交
155
      // pooling backward
S
sweetsky0901 已提交
156
      if (pooling_type == "max") {
F
From00 已提交
157 158 159
        phi::funcs::MaxPool2dGradFunctor<
            typename framework::ConvertToPhiContext<DeviceContext>::TYPE, T>
            pool2d_backward;
S
sweetsky0901 已提交
160 161 162 163
        pool2d_backward(context.template device_context<DeviceContext>(), *in_x,
                        *&out_level, *&outgrad_level, kernel_size, strides,
                        paddings, in_x_grad);
      } else if (pooling_type == "avg") {
F
From00 已提交
164 165 166
        phi::funcs::Pool2dGradFunctor<
            typename framework::ConvertToPhiContext<DeviceContext>::TYPE,
            phi::funcs::AvgPoolGrad<T>, T>
S
sweetsky0901 已提交
167
            pool_backward;
F
From00 已提交
168
        phi::funcs::AvgPoolGrad<T> avg_process;
S
sweetsky0901 已提交
169
        pool_backward(context.template device_context<DeviceContext>(), *in_x,
S
sweetsky0901 已提交
170
                      *&out_level, *&outgrad_level, kernel_size, strides,
171
                      paddings, true, false, in_x_grad, avg_process);
S
sweetsky0901 已提交
172
      }
S
sweetsky0901 已提交
173 174 175 176 177
    }
  }
};
}  // namespace operators
}  // namespace paddle