pool3d_op_plugin.cu 14.2 KB
Newer Older
F
feng_shuai 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
// Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
//     http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, softwarepool
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.

#include "paddle/fluid/inference/tensorrt/plugin/pool3d_op_plugin.h"
F
From00 已提交
16
#include "paddle/phi/kernels/funcs/pooling.h"
F
feng_shuai 已提交
17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110

namespace paddle {
namespace inference {
namespace tensorrt {
namespace plugin {

size_t Pool3DPlugin::getSerializationSize() const TRT_NOEXCEPT {
  return getBaseSerializationSize() + SerializedSize(ceil_mode_) +
         SerializedSize(pool3d_type_) + SerializedSize(adaptive_) +
         SerializedSize(ksize_) + SerializedSize(strides_) +
         SerializedSize(paddings_) + SerializedSize(input_shape_) +
         SerializedSize(output_shape_);
}

// TRT will call this func when we need to serialize the configuration of
// tensorrt.
void Pool3DPlugin::serialize(void *buffer) const TRT_NOEXCEPT {
  serializeBase(buffer);
  SerializeValue(&buffer, ceil_mode_);
  SerializeValue(&buffer, pool3d_type_);
  SerializeValue(&buffer, adaptive_);
  SerializeValue(&buffer, ksize_);
  SerializeValue(&buffer, strides_);
  SerializeValue(&buffer, paddings_);
  SerializeValue(&buffer, input_shape_);
  SerializeValue(&buffer, output_shape_);
}

Pool3DPlugin *Pool3DPlugin::clone() const TRT_NOEXCEPT {
  return new Pool3DPlugin(ceil_mode_, pool3d_type_, adaptive_, ksize_, strides_,
                          paddings_, input_shape_);
}

const char *Pool3DPlugin::getPluginType() const TRT_NOEXCEPT {
  return "pool3d_plugin";
}

int Pool3DPlugin::getNbOutputs() const TRT_NOEXCEPT { return 1; }

int Pool3DPlugin::initialize() TRT_NOEXCEPT { return 0; }

nvinfer1::DataType Pool3DPlugin::getOutputDataType(
    int index, const nvinfer1::DataType *input_types,
    int nb_inputs) const TRT_NOEXCEPT {
  return input_types[0];
}

void Pool3DPlugin::destroy() TRT_NOEXCEPT { delete this; }

nvinfer1::Dims Pool3DPlugin::getOutputDimensions(
    int index, const nvinfer1::Dims *inputDims, int nbInputs) TRT_NOEXCEPT {
  PADDLE_ENFORCE_EQ(nbInputs, 1,
                    platform::errors::InvalidArgument(
                        "The Pool3D Plugin only has one input, so the nbInputs "
                        "value should be 1, but get %d.",
                        nbInputs));
  PADDLE_ENFORCE_EQ(index, 0, platform::errors::InvalidArgument(
                                  "The Pool3D Plugin only has one input, so "
                                  "the index value should be 0, but get %d.",
                                  index));
  PADDLE_ENFORCE_EQ(inputDims[0].nbDims, 4,
                    platform::errors::InvalidArgument(
                        "The Pool3D Plugin only has four Dimensions, so the "
                        "nbDims value should be 4, but get %d.",
                        inputDims[0].nbDims));

  nvinfer1::Dims const &input_dims = inputDims[0];

  nvinfer1::Dims output_dims = input_dims;

  output_dims.d[1] = output_shape_[1];
  output_dims.d[2] = output_shape_[2];
  output_dims.d[3] = output_shape_[3];
  return output_dims;
}

int Pool3DPlugin::enqueue(int batchSize, const void *const *inputs,
#if IS_TRT_VERSION_LT(8000)
                          void **outputs, void *workspace,
                          cudaStream_t stream) TRT_NOEXCEPT {
#else
                          void *const *outputs, void *workspace,
                          cudaStream_t stream) TRT_NOEXCEPT {
#endif
  int input_size = 0;
  float const *idata = reinterpret_cast<float const *>(inputs[0]);
  float *const *odatas = reinterpret_cast<float *const *>(outputs);

  std::vector<int> input_shape = input_shape_;
  std::vector<int> output_shape = output_shape_;
  input_shape.insert(input_shape.begin(), batchSize);
  output_shape.insert(output_shape.begin(), batchSize);

  if (pool3d_type_ == Pool3DType::max) {
F
From00 已提交
111 112
    phi::funcs::MaxPool<float> pool_process;
    phi::funcs::Pool3dDirectCUDAFunctor<phi::funcs::MaxPool<float>, float>
F
feng_shuai 已提交
113 114 115 116
        pool3d_forward;
    pool3d_forward(idata, input_shape, output_shape, ksize_, strides_,
                   paddings_, true, adaptive_, odatas[0], stream, pool_process);
  } else if (pool3d_type_ == Pool3DType::avg) {
F
From00 已提交
117 118
    phi::funcs::AvgPool<float> pool_process;
    phi::funcs::Pool3dDirectCUDAFunctor<phi::funcs::AvgPool<float>, float>
F
feng_shuai 已提交
119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351
        pool3d_forward;
    pool3d_forward(idata, input_shape, output_shape, ksize_, strides_,
                   paddings_, true, adaptive_, odatas[0], stream, pool_process);
  }

  return cudaGetLastError() != cudaSuccess;
}

// Dynamic Plugin below.

Pool3DPluginDynamic::Pool3DPluginDynamic(void const *serialData,
                                         size_t serialLength) {
  DeserializeValue(&serialData, &serialLength, &ceil_mode_);
  const char *pool3d_type;
  DeserializeValue(&serialData, &serialLength, &pool3d_type);
  pool3d_type_ = std::string(pool3d_type);
  DeserializeValue(&serialData, &serialLength, &adaptive_);
  DeserializeValue(&serialData, &serialLength, &ksize_);
  DeserializeValue(&serialData, &serialLength, &strides_);
  DeserializeValue(&serialData, &serialLength, &paddings_);
  DeserializeValue(&serialData, &serialLength, &is_global_);
}

nvinfer1::IPluginV2DynamicExt *Pool3DPluginDynamic::clone() const TRT_NOEXCEPT {
  return new Pool3DPluginDynamic(ceil_mode_, pool3d_type_, adaptive_, ksize_,
                                 strides_, paddings_, is_global_);
}

const char *Pool3DPluginDynamic::getPluginType() const TRT_NOEXCEPT {
  return "pool3d_plugin_dynamic";
}
int Pool3DPluginDynamic::getNbOutputs() const TRT_NOEXCEPT { return 1; }

int Pool3DPluginDynamic::initialize() TRT_NOEXCEPT { return 0; }

void Pool3DPluginDynamic::configurePlugin(
    const nvinfer1::DynamicPluginTensorDesc *in, int nbInputs,
    const nvinfer1::DynamicPluginTensorDesc *out, int nbOutputs) TRT_NOEXCEPT {}

size_t Pool3DPluginDynamic::getWorkspaceSize(
    const nvinfer1::PluginTensorDesc *inputs, int nbInputs,
    const nvinfer1::PluginTensorDesc *outputs,
    int nbOutputs) const TRT_NOEXCEPT {
  return 0;
}

size_t Pool3DPluginDynamic::getSerializationSize() const TRT_NOEXCEPT {
  return SerializedSize(ceil_mode_) + SerializedSize(pool3d_type_.c_str()) +
         SerializedSize(adaptive_) + SerializedSize(ksize_) +
         SerializedSize(strides_) + SerializedSize(paddings_) +
         SerializedSize(is_global_);
}

void Pool3DPluginDynamic::serialize(void *buffer) const TRT_NOEXCEPT {
  SerializeValue(&buffer, ceil_mode_);
  SerializeValue(&buffer, pool3d_type_.c_str());
  SerializeValue(&buffer, adaptive_);
  SerializeValue(&buffer, ksize_);
  SerializeValue(&buffer, strides_);
  SerializeValue(&buffer, paddings_);
  SerializeValue(&buffer, is_global_);
}

nvinfer1::DimsExprs Pool3DPluginDynamic::getOutputDimensions(
    int output_index, const nvinfer1::DimsExprs *inputs, int nb_inputs,
    nvinfer1::IExprBuilder &expr_builder) TRT_NOEXCEPT {
  PADDLE_ENFORCE_EQ(nb_inputs, 1,
                    platform::errors::InvalidArgument(
                        "The Split plugin should be only one input."));

  PADDLE_ENFORCE_EQ(
      inputs[0].d[1]->isConstant(), true,
      platform::errors::InvalidArgument("The channel dimension should be "
                                        "static, but we found it's dynamic."));
  nvinfer1::DimsExprs output(inputs[0]);
  if (is_global_) {
    output.d[2] = expr_builder.constant(1);
    output.d[3] = expr_builder.constant(1);
    output.d[4] = expr_builder.constant(1);
    return output;
  }
  if (adaptive_) {
    output.d[2] = expr_builder.constant(ksize_[0]);
    output.d[3] = expr_builder.constant(ksize_[1]);
    output.d[4] = expr_builder.constant(ksize_[2]);
    return output;
  }

  auto stri_0 = expr_builder.constant(strides_[0]);
  auto stri_1 = expr_builder.constant(strides_[1]);
  auto stri_2 = expr_builder.constant(strides_[2]);
  auto one_value = expr_builder.constant(1);

  auto v0_tmp = expr_builder.constant(-ksize_[0] + 2 * paddings_[0]);
  auto v1_tmp = expr_builder.constant(-ksize_[1] + 2 * paddings_[1]);
  auto v2_tmp = expr_builder.constant(-ksize_[2] + 2 * paddings_[2]);

  auto ceil_tmp =
      expr_builder.constant(-ksize_[0] + 2 * paddings_[0] + strides_[0] - 1);
  auto ceil1_tmp =
      expr_builder.constant(-ksize_[1] + 2 * paddings_[1] + strides_[1] - 1);
  auto ceil2_tmp =
      expr_builder.constant(-ksize_[2] + 2 * paddings_[2] + strides_[2] - 1);

  if (!ceil_mode_) {
    output.d[2] = expr_builder.operation(
        nvinfer1::DimensionOperation::kSUM,
        *expr_builder.operation(
            nvinfer1::DimensionOperation::kFLOOR_DIV,
            *expr_builder.operation(nvinfer1::DimensionOperation::kSUM,
                                    *inputs[0].d[2], *v0_tmp),
            *stri_0),
        *one_value);
    output.d[3] = expr_builder.operation(
        nvinfer1::DimensionOperation::kSUM,
        *expr_builder.operation(
            nvinfer1::DimensionOperation::kFLOOR_DIV,
            *expr_builder.operation(nvinfer1::DimensionOperation::kSUM,
                                    *inputs[0].d[3], *v1_tmp),
            *stri_1),
        *one_value);
    output.d[4] = expr_builder.operation(
        nvinfer1::DimensionOperation::kSUM,
        *expr_builder.operation(
            nvinfer1::DimensionOperation::kFLOOR_DIV,
            *expr_builder.operation(nvinfer1::DimensionOperation::kSUM,
                                    *inputs[0].d[4], *v2_tmp),
            *stri_2),
        *one_value);

  } else {
    output.d[2] = expr_builder.operation(
        nvinfer1::DimensionOperation::kSUM,
        *expr_builder.operation(
            nvinfer1::DimensionOperation::kFLOOR_DIV,
            *expr_builder.operation(nvinfer1::DimensionOperation::kSUM,
                                    *inputs[0].d[2], *ceil_tmp),
            *stri_0),
        *one_value);
    output.d[3] = expr_builder.operation(
        nvinfer1::DimensionOperation::kSUM,
        *expr_builder.operation(
            nvinfer1::DimensionOperation::kFLOOR_DIV,
            *expr_builder.operation(nvinfer1::DimensionOperation::kSUM,
                                    *inputs[0].d[3], *ceil1_tmp),
            *stri_1),
        *one_value);
    output.d[4] = expr_builder.operation(
        nvinfer1::DimensionOperation::kSUM,
        *expr_builder.operation(
            nvinfer1::DimensionOperation::kFLOOR_DIV,
            *expr_builder.operation(nvinfer1::DimensionOperation::kSUM,
                                    *inputs[0].d[4], *ceil2_tmp),
            *stri_2),
        *one_value);
  }

  return output;
}

bool Pool3DPluginDynamic::supportsFormatCombination(
    int pos, const nvinfer1::PluginTensorDesc *in_out, int nb_inputs,
    int nb_outputs) TRT_NOEXCEPT {
  PADDLE_ENFORCE_NOT_NULL(
      in_out, platform::errors::InvalidArgument(
                  "The input of swish plugin shoule not be nullptr."));

  PADDLE_ENFORCE_LT(
      pos, nb_inputs + nb_outputs,
      platform::errors::InvalidArgument("The pos(%d) should be less than the "
                                        "num(%d) of the input and the output.",
                                        pos, nb_inputs + nb_outputs));
  (in_out && pos < (nb_inputs + nb_outputs));

  return ((in_out[pos].type == nvinfer1::DataType::kFLOAT) &&
          in_out[pos].format == nvinfer1::PluginFormat::kLINEAR);
}

nvinfer1::DataType Pool3DPluginDynamic::getOutputDataType(
    int index, const nvinfer1::DataType *input_types,
    int nb_inputs) const TRT_NOEXCEPT {
  PADDLE_ENFORCE_EQ(index, 0,
                    platform::errors::InvalidArgument(
                        "The Pool3D Plugin only has one input, so the "
                        "index value should be 0, but get %d.",
                        index));
  PADDLE_ENFORCE_EQ((input_types[0] == nvinfer1::DataType::kFLOAT), true,
                    platform::errors::InvalidArgument(
                        "The input type should be half or float"));
  return input_types[0];
}

int Pool3DPluginDynamic::enqueue(const nvinfer1::PluginTensorDesc *input_desc,
                                 const nvinfer1::PluginTensorDesc *output_desc,
                                 const void *const *inputs,
                                 void *const *outputs, void *workspace,
                                 cudaStream_t stream) TRT_NOEXCEPT {
  auto input_dims = input_desc[0].dims;
  int n = input_dims.d[0];
  int c = input_dims.d[1];
  int d = input_dims.d[2];
  int h = input_dims.d[3];
  int w = input_dims.d[4];

  const float *input = static_cast<const float *>(inputs[0]);
  float *output = static_cast<float *>(outputs[0]);

  std::vector<int> input_shape, output_shape;
  for (int i = 0; i < input_dims.nbDims; i++)
    input_shape.push_back(input_dims.d[i]);
  output_shape = input_shape;

  std::vector<int> ksize = ksize_;
  std::vector<int> paddings = paddings_;
  if (is_global_) {
    ksize[0] = d;
    ksize[1] = h;
    ksize[2] = w;
    paddings[0] = 0;
    paddings[1] = 0;
    paddings[2] = 0;
    output_shape[2] = 1;
    output_shape[3] = 1;
    output_shape[4] = 1;
  } else {
    auto data_dim = CalcOutputSize({d, h, w}, ceil_mode_, adaptive_, ksize_,
                                   strides_, paddings_);
    output_shape[2] = data_dim[0];
    output_shape[3] = data_dim[1];
    output_shape[4] = data_dim[2];
  }

  if (pool3d_type_ == "max") {
F
From00 已提交
352 353
    phi::funcs::MaxPool<float> pool_process;
    phi::funcs::Pool3dDirectCUDAFunctor<phi::funcs::MaxPool<float>, float>
F
feng_shuai 已提交
354 355 356 357
        pool3d_forward;
    pool3d_forward(input, input_shape, output_shape, ksize, strides_, paddings,
                   true, adaptive_, output, stream, pool_process);
  } else if (pool3d_type_ == "avg") {
F
From00 已提交
358 359
    phi::funcs::AvgPool<float> pool_process;
    phi::funcs::Pool3dDirectCUDAFunctor<phi::funcs::AvgPool<float>, float>
F
feng_shuai 已提交
360 361 362 363 364 365 366 367 368 369 370 371
        pool3d_forward;
    pool3d_forward(input, input_shape, output_shape, ksize, strides_, paddings,
                   true, adaptive_, output, stream, pool_process);
  }

  return cudaGetLastError() != cudaSuccess;
}

}  // namespace plugin
}  // namespace tensorrt
}  // namespace inference
}  // namespace paddle