test_lstm_cudnn_op.py 18.8 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44
#   Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

import unittest
import numpy as np
import math

import paddle.fluid.core as core
from op_test import OpTest
import paddle
import paddle.fluid as fluid
import paddle.fluid.layers as layers
import random

random.seed(2)
np.set_printoptions(threshold=np.inf)
paddle.enable_static()

SIGMOID_THRESHOLD_MIN = -40.0
SIGMOID_THRESHOLD_MAX = 13.0
EXP_MAX_INPUT = 40.0


class RandomWeight:
    def __init__(self):
        pass

    def updata_weight(self, hidden_size, input_size, dtype):
        std = 1.0 / math.sqrt(hidden_size)
        self.hidden_size = hidden_size
        self.input_size = input_size
        self.dtype = dtype

45 46 47
        self.weight_ih = np.random.uniform(
            low=-std, high=std, size=(4 * self.hidden_size, self.input_size)
        ).astype(dtype)
48
        self.weight_hh = np.random.uniform(
49 50 51 52 53 54 55 56
            low=-std, high=std, size=(4 * self.hidden_size, self.hidden_size)
        ).astype(dtype)
        self.bias_ih = np.random.uniform(
            low=-std, high=std, size=(4 * self.hidden_size)
        ).astype(dtype)
        self.bias_hh = np.random.uniform(
            low=-std, high=std, size=(4 * self.hidden_size)
        ).astype(dtype)
57 58 59 60 61


weight = RandomWeight()


62
class LayerMixin:
63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140
    def __call__(self, *args, **kwargs):
        return self.forward(*args, **kwargs)


class LayerListMixin(LayerMixin):
    def __init__(self, layers=None):
        self._layers = list(layers) if layers else []

    def append(self, layer):
        self._layers.append(layer)

    def __iter__(self):
        return iter(self._layers)


class LSTMCell(LayerMixin):
    def __init__(self, input_size, hidden_size, bias=True):
        self.input_size = input_size
        self.hidden_size = hidden_size
        self.bias = bias
        self.dtype = np.float64
        self.parameters = dict()
        self.weight_ih = weight.weight_ih
        self.weight_hh = weight.weight_hh
        self.parameters['weight_ih'] = self.weight_ih
        self.parameters['weight_hh'] = self.weight_hh
        if bias:
            self.bias_ih = weight.bias_ih
            self.bias_hh = weight.bias_hh
            self.parameters['bias_ih'] = self.bias_ih
            self.parameters['bias_hh'] = self.bias_hh
        else:
            self.bias_ih = None
            self.bias_hh = None

    def init_state(self, inputs):
        batch_size = inputs.shape[0]
        init_h = np.zeros((batch_size, self.hidden_size), dtype=inputs.dtype)
        init_c = np.zeros((batch_size, self.hidden_size), dtype=inputs.dtype)
        return init_h, init_c

    def forward(self, inputs, hx=None):
        if hx is None:
            hx = self.init_state(inputs)
        pre_hidden, pre_cell = hx
        gates = np.matmul(inputs, self.weight_ih.T)
        if self.bias_ih is not None:
            gates = gates + self.bias_ih
        gates += np.matmul(pre_hidden, self.weight_hh.T)
        if self.bias_hh is not None:
            gates = gates + self.bias_hh

        chunked_gates = np.split(gates, 4, -1)

        i = 1.0 / (1.0 + np.exp(-chunked_gates[0]))
        f = 1.0 / (1.0 + np.exp(-chunked_gates[1]))
        o = 1.0 / (1.0 + np.exp(-chunked_gates[3]))
        c = f * pre_cell + i * np.tanh(chunked_gates[2])
        h = o * np.tanh(c)

        return h, (h, c)


def sequence_mask(lengths, max_len=None):
    if max_len is None:
        max_len = np.max(lengths)
    else:
        assert max_len >= np.max(lengths)
    return np.arange(max_len) < np.expand_dims(lengths, -1)


def update_state(mask, new, old):
    if not isinstance(old, (tuple, list)):
        return np.where(mask, new, old)
    else:
        return tuple(map(lambda x, y: np.where(mask, x, y), new, old))


141 142 143 144 145 146 147 148
def rnn(
    cell,
    inputs,
    initial_states,
    sequence_length=None,
    time_major=False,
    is_reverse=False,
):
149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169
    if not time_major:
        inputs = np.transpose(inputs, [1, 0, 2])
    if is_reverse:
        inputs = np.flip(inputs, 0)

    if sequence_length is None:
        mask = None
    else:
        mask = np.transpose(sequence_mask(sequence_length), [1, 0])
        mask = np.expand_dims(mask, -1)
        if is_reverse:
            mask = np.flip(mask, 0)

    time_steps = inputs.shape[0]
    state = initial_states
    outputs = []
    for t in range(time_steps):
        x_t = inputs[t]
        if mask is not None:
            m_t = mask[t]
            y, new_state = cell(x_t, state)
170
            y = np.where(m_t, y, 0.0)
171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187
            outputs.append(y)
            state = update_state(m_t, new_state, state)
        else:
            y, new_state = cell(x_t, state)
            outputs.append(y)
            state = new_state

    outputs = np.stack(outputs)
    final_state = state

    if is_reverse:
        outputs = np.flip(outputs, 0)
    if not time_major:
        outputs = np.transpose(outputs, [1, 0, 2])
    return outputs, final_state


188 189 190 191 192 193 194 195
def birnn(
    cell_fw,
    cell_bw,
    inputs,
    initial_states,
    sequence_length=None,
    time_major=False,
):
196
    states_fw, states_bw = initial_states
197 198 199 200 201 202 203 204 205 206 207 208
    outputs_fw, states_fw = rnn(
        cell_fw, inputs, states_fw, sequence_length, time_major=time_major
    )

    outputs_bw, states_bw = rnn(
        cell_bw,
        inputs,
        states_bw,
        sequence_length,
        time_major=time_major,
        is_reverse=True,
    )
209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271

    outputs = np.concatenate((outputs_fw, outputs_bw), -1)
    final_states = (states_fw, states_bw)
    return outputs, final_states


def flatten(nested):
    return list(_flatten(nested))


def _flatten(nested):
    for item in nested:
        if isinstance(item, (list, tuple)):
            for subitem in _flatten(item):
                yield subitem
        else:
            yield item


def unstack(array, axis=0):
    num = array.shape[axis]
    sub_arrays = np.split(array, num, axis)
    return [np.squeeze(sub_array, axis) for sub_array in sub_arrays]


def dropout(array, p=0.0):
    if p == 0.0:
        return array

    mask = (np.random.uniform(size=array.shape) < (1 - p)).astype(array.dtype)
    return array * (mask / (1 - p))


def split_states(states, bidirectional=False, state_components=1):
    if state_components == 1:
        states = unstack(states)
        if not bidirectional:
            return states
        else:
            return list(zip(states[::2], states[1::2]))
    else:
        assert len(states) == state_components
        states = tuple([unstack(item) for item in states])
        if not bidirectional:
            return list(zip(*states))
        else:
            states = list(zip(*states))
            return list(zip(states[::2], states[1::2]))


def concat_states(states, bidirectional=False, state_components=1):
    if state_components == 1:
        return np.stack(flatten(states))
    else:
        states = flatten(states)
        componnets = []
        for i in range(state_components):
            componnets.append(states[i::state_components])
        return [np.stack(item) for item in componnets]


class RNN(LayerMixin):
    def __init__(self, cell, is_reverse=False, time_major=False):
272
        super().__init__()
273 274 275 276 277 278 279 280
        self.cell = cell
        if not hasattr(self.cell, "call"):
            # for non-dygraph mode, `rnn` api uses cell.call
            self.cell.call = self.cell.forward
        self.is_reverse = is_reverse
        self.time_major = time_major

    def forward(self, inputs, initial_states=None, sequence_length=None):
281 282 283 284 285 286 287 288
        final_outputs, final_states = rnn(
            self.cell,
            inputs,
            initial_states=initial_states,
            sequence_length=sequence_length,
            time_major=self.time_major,
            is_reverse=self.is_reverse,
        )
289 290 291 292 293
        return final_outputs, final_states


class BiRNN(LayerMixin):
    def __init__(self, cell_fw, cell_bw, time_major=False):
294
        super().__init__()
295 296 297 298
        self.cell_fw = cell_fw
        self.cell_bw = cell_bw
        self.time_major = time_major

299 300 301
    def forward(
        self, inputs, initial_states=None, sequence_length=None, **kwargs
    ):
302
        if isinstance(initial_states, (list, tuple)):
303 304 305
            assert (
                len(initial_states) == 2
            ), "length of initial_states should be 2 when it is a list/tuple"
306 307 308
        else:
            initial_states = [initial_states, initial_states]

309 310 311 312 313 314 315 316
        outputs, final_states = birnn(
            self.cell_fw,
            self.cell_bw,
            inputs,
            initial_states,
            sequence_length,
            self.time_major,
        )
317 318 319 320 321 322 323 324 325
        return outputs, final_states


class RNNMixin(LayerListMixin):
    def forward(self, inputs, initial_states=None, sequence_length=None):
        batch_index = 1 if self.time_major else 0
        batch_size = inputs.shape[batch_index]
        dtype = inputs.dtype
        if initial_states is None:
326 327 328 329 330
            state_shape = (
                self.num_layers * self.num_directions,
                batch_size,
                self.hidden_size,
            )
331 332 333
            if self.state_components == 1:
                initial_states = np.zeros(state_shape, dtype)
            else:
334 335 336 337 338 339 340 341 342 343
                initial_states = tuple(
                    [
                        np.zeros(state_shape, dtype)
                        for _ in range(self.state_components)
                    ]
                )

        states = split_states(
            initial_states, self.num_directions == 2, self.state_components
        )
344 345 346 347 348 349 350 351 352
        final_states = []

        for i, rnn_layer in enumerate(self):
            if i > 0:
                inputs = dropout(inputs, self.dropout)
            outputs, final_state = rnn_layer(inputs, states[i], sequence_length)
            final_states.append(final_state)
            inputs = outputs

353 354 355
        final_states = concat_states(
            final_states, self.num_directions == 2, self.state_components
        )
356 357 358 359
        return outputs, final_states


class LSTM(RNNMixin):
360 361 362 363 364 365 366 367 368
    def __init__(
        self,
        input_size,
        hidden_size,
        num_layers=1,
        direction="forward",
        dropout=0.0,
        time_major=False,
    ):
369
        super().__init__()
370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388

        if direction in ["forward", "backward"]:
            is_reverse = direction == "backward"
            cell = LSTMCell(input_size, hidden_size)
            self.append(RNN(cell, is_reverse, time_major))
            for i in range(1, num_layers):
                cell = LSTMCell(hidden_size, hidden_size)
                self.append(RNN(cell, is_reverse, time_major))
        elif direction == "bidirectional":
            cell_fw = LSTMCell(input_size, hidden_size)
            cell_bw = LSTMCell(input_size, hidden_size)
            self.append(BiRNN(cell_fw, cell_bw, time_major))
            for i in range(1, num_layers):
                cell_fw = LSTMCell(2 * hidden_size, hidden_size)
                cell_bw = LSTMCell(2 * hidden_size, hidden_size)
                self.append(BiRNN(cell_fw, cell_bw, time_major))
        else:
            raise ValueError(
                "direction should be forward, backward or bidirectional, "
389 390
                "received direction = {}".format(direction)
            )
391 392 393 394 395 396 397 398 399 400

        self.input_size = input_size
        self.hidden_size = hidden_size
        self.dropout = dropout
        self.num_directions = 2 if direction == "bidirectional" else 1
        self.time_major = time_major
        self.num_layers = num_layers
        self.state_components = 2


401 402 403
@unittest.skipIf(
    not core.is_compiled_with_cuda(), "core is not compiled with CUDA"
)
404 405 406 407 408 409 410 411 412 413 414 415
class TestCUDNNLstmOp(OpTest):
    def get_weight_names(self):
        weight_names = []
        for i in range(2 * self.num_layers):
            weight_names.append('weight{}'.format(i))
        for i in range(2 * self.num_layers):
            weight_names.append('bias{}'.format(i))
        return weight_names

    def setUp(self):
        self.op_type = "cudnn_lstm"
        self.dtype = np.float32 if core.is_compiled_with_rocm() else np.float64
416 417 418 419 420
        self.sequence_length = (
            None
            if core.is_compiled_with_rocm()
            else np.array([12, 11, 10, 9, 8], dtype=np.int32)
        )
421 422 423 424 425 426 427 428
        self.num_layers = 1
        self.set_attrs()

        seq_length = 12
        batch_size = 5
        input_size = 21
        hidden_size = 21

429 430 431
        input = np.random.uniform(
            low=-0.1, high=0.1, size=(seq_length, batch_size, input_size)
        ).astype(self.dtype)
432 433 434 435 436 437
        input[11][1:][:] = 0
        input[10][2:][:] = 0
        input[9][3:][:] = 0
        input[8][4:][:] = 0

        weight.updata_weight(hidden_size, input_size, self.dtype)
438 439 440 441 442 443 444 445 446 447 448
        rnn1 = LSTM(
            input_size,
            hidden_size,
            num_layers=self.num_layers,
            time_major=True,
            direction="forward",
        )

        output, (last_hidden, last_cell) = rnn1(
            input, sequence_length=self.sequence_length
        )
449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471

        flat_w = []
        num = 0
        for i in range(self.num_layers):
            if i == 0:
                weight_ih = weight.weight_ih
            else:
                weight_ih = weight.weight_hh
            flat_w.append(("weight" + str(num), weight_ih))
            num += 1
        for i in range(self.num_layers):
            weight_hh = weight.weight_hh
            flat_w.append(("weight" + str(num), weight_hh))
            num += 1
        num = 0
        for i in range(self.num_layers):
            bias_ih = weight.bias_ih
            flat_w.append(("bias" + str(num), bias_ih))
            num += 1
        for i in range(self.num_layers):
            bias_hh = weight.bias_hh
            flat_w.append(("bias" + str(num), bias_hh))
            num += 1
472 473 474 475 476 477
        init_h = np.zeros((self.num_layers, batch_size, hidden_size)).astype(
            self.dtype
        )
        init_c = np.zeros((self.num_layers, batch_size, hidden_size)).astype(
            self.dtype
        )
478 479 480 481 482 483 484 485 486 487 488 489 490 491
        state_out = np.ndarray((300)).astype("uint8")

        if core.is_compiled_with_rocm():
            for i in range(len(flat_w)):
                w = np.split(flat_w[i][1], 4, 0)
                w = [w[0], w[1], w[3], w[2]]
                w = np.concatenate(w)
                flat_w[i] = (flat_w[i][0], w)

        self.inputs = {
            'Input': input,
            'WeightList': flat_w,
            'InitH': init_h,
            'InitC': init_c,
492
            'SequenceLength': self.sequence_length,
493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512
        }
        if self.sequence_length is None:
            self.inputs = {
                'Input': input,
                'WeightList': flat_w,
                'InitH': init_h,
                'InitC': init_c,
            }
        self.attrs = {
            'dropout_prob': 0.0,
            'is_bidirec': False,
            'input_size': input_size,
            'hidden_size': hidden_size,
            'num_layers': self.num_layers,
        }
        self.outputs = {
            'Out': output,
            "LastH": last_hidden,
            'LastC': last_cell,
            'Reserve': np.ndarray((400)).astype("uint8"),
513
            'StateOut': state_out,
514 515 516 517 518 519 520 521
        }

    def set_attrs(self):
        pass

    def test_output_with_place(self):
        place = core.CUDAPlace(0)
        if core.is_compiled_with_rocm():
522 523 524
            self.check_output_with_place(
                place, atol=1e-5, no_check_set=['Reserve', 'StateOut']
            )
525
        else:
526 527 528
            self.check_output_with_place(
                place, no_check_set=['Reserve', 'StateOut']
            )
529 530 531 532 533 534

    def test_grad_with_place(self):
        place = core.CUDAPlace(0)
        var_name_list = self.get_weight_names()
        for var_name in var_name_list:
            self.check_grad_with_place(
535 536 537 538
                place,
                set(['Input', var_name, 'InitH', 'InitC']),
                ['Out', 'LastH', 'LastC'],
            )
539 540


541 542 543
@unittest.skipIf(
    not core.is_compiled_with_cuda(), "core is not compiled with CUDA"
)
544 545 546 547 548 549 550 551
class TestCUDNNlstmAPI(unittest.TestCase):
    def test_lstm(self):
        seq_len = 20
        batch_size = 5
        hidden_size = 20
        dropout_prob = 0.0
        num_layers = 1
        dtype = 'float32' if core.is_compiled_with_rocm() else 'float64'
552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570
        input = fluid.data(
            name='input', shape=[seq_len, batch_size, hidden_size], dtype=dtype
        )
        init_h = layers.fill_constant(
            [num_layers, batch_size, hidden_size], dtype, 0.0
        )
        init_c = layers.fill_constant(
            [num_layers, batch_size, hidden_size], dtype, 0.0
        )
        rnn_out, last_h, last_c = layers.lstm(
            input,
            init_h,
            init_c,
            seq_len,
            hidden_size,
            num_layers,
            dropout_prob,
            False,
        )
571 572
        exe = fluid.Executor(fluid.CUDAPlace(0))
        exe.run(fluid.default_startup_program())
573 574 575 576 577 578 579 580 581 582 583 584 585
        input_i = np.random.uniform(
            low=-0.1, high=0.1, size=(seq_len, batch_size, hidden_size)
        ).astype("float64")
        out = exe.run(
            fluid.default_main_program(),
            feed={'input': input_i},
            fetch_list=[rnn_out, last_h, last_c, 'cudnn_lstm_0.w_0'],
        )


@unittest.skipIf(
    not core.is_compiled_with_cuda(), "core is not compiled with CUDA"
)
586 587 588 589 590 591 592 593
class TestCUDNNlstmAPI(unittest.TestCase):
    def test_lstm(self):
        seq_len = 20
        batch_size = 5
        hidden_size = 20
        dropout_prob = 0.0
        num_layers = 2
        dtype = 'float32' if core.is_compiled_with_rocm() else 'float64'
594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613
        input = fluid.data(
            name='input', shape=[seq_len, batch_size, hidden_size], dtype=dtype
        )
        init_h = layers.fill_constant(
            [num_layers, batch_size, hidden_size], dtype, 0.0
        )
        init_c = layers.fill_constant(
            [num_layers, batch_size, hidden_size], dtype, 0.0
        )
        rnn_out, last_h, last_c = layers.lstm(
            input,
            init_h,
            init_c,
            seq_len,
            hidden_size,
            num_layers,
            dropout_prob,
            False,
            True,
        )
614 615
        exe = fluid.Executor(fluid.CUDAPlace(0))
        exe.run(fluid.default_startup_program())
616 617 618 619 620 621 622 623
        input_i = np.random.uniform(
            low=-0.1, high=0.1, size=(seq_len, batch_size, hidden_size)
        ).astype(dtype)
        out = exe.run(
            fluid.default_main_program(),
            feed={'input': input_i},
            fetch_list=[rnn_out, last_h, last_c, 'cudnn_lstm_0.w_0'],
        )
624 625 626 627


if __name__ == '__main__':
    unittest.main()