dist_ctr_reader.py 4.5 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18
# Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

import logging
import paddle
import tarfile

19 20 21
from paddle.fluid.log_helper import get_logger

logger = get_logger("paddle", logging.INFO)
22

23
DATA_URL = "http://paddle-ctr-data.bj.bcebos.com/avazu_ctr_data.tgz"
24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110
DATA_MD5 = "c11df99fbd14e53cd4bfa6567344b26e"
"""
avazu_ctr_data/train.txt
avazu_ctr_data/infer.txt
avazu_ctr_data/test.txt
avazu_ctr_data/data.meta.txt
"""


def read_data(file_name):
    path = paddle.dataset.common.download(DATA_URL, "avazu_ctr_data", DATA_MD5)
    tar = tarfile.open(path, "r:gz")
    tar_info = None
    for member in tar.getmembers():
        if member.name.endswith(file_name):
            tar_info = member
    f = tar.extractfile(tar_info)
    ret_lines = [_.decode('utf-8') for _ in f.readlines()]
    return ret_lines


class TaskMode:
    TRAIN_MODE = 0
    TEST_MODE = 1
    INFER_MODE = 2

    def __init__(self, mode):
        self.mode = mode

    def is_train(self):
        return self.mode == self.TRAIN_MODE

    def is_test(self):
        return self.mode == self.TEST_MODE

    def is_infer(self):
        return self.mode == self.INFER_MODE

    @staticmethod
    def create_train():
        return TaskMode(TaskMode.TRAIN_MODE)

    @staticmethod
    def create_test():
        return TaskMode(TaskMode.TEST_MODE)

    @staticmethod
    def create_infer():
        return TaskMode(TaskMode.INFER_MODE)


class ModelType:
    CLASSIFICATION = 0
    REGRESSION = 1

    def __init__(self, mode):
        self.mode = mode

    def is_classification(self):
        return self.mode == self.CLASSIFICATION

    def is_regression(self):
        return self.mode == self.REGRESSION

    @staticmethod
    def create_classification():
        return ModelType(ModelType.CLASSIFICATION)

    @staticmethod
    def create_regression():
        return ModelType(ModelType.REGRESSION)


def load_dnn_input_record(sent):
    return list(map(int, sent.split()))


def load_lr_input_record(sent):
    res = []
    for _ in [x.split(':') for x in sent.split()]:
        res.append(int(_[0]))
    return res


feeding_index = {'dnn_input': 0, 'lr_input': 1, 'click': 2}


111
class Dataset:
112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165
    def train(self):
        '''
        Load trainset.
        '''
        file_name = "train.txt"
        logger.info("load trainset from %s" % file_name)
        mode = TaskMode.create_train()
        return self._parse_creator(file_name, mode)

    def test(self):
        '''
        Load testset.
        '''
        file_name = "test.txt"
        logger.info("load testset from %s" % file_name)
        mode = TaskMode.create_test()
        return self._parse_creator(file_name, mode)

    def infer(self):
        '''
        Load infer set.
        '''
        file_name = "infer.txt"
        logger.info("load inferset from %s" % file_name)
        mode = TaskMode.create_infer()
        return self._parse_creator(file_name, mode)

    def _parse_creator(self, file_name, mode):
        '''
        Parse dataset.
        '''

        def _parse():
            data = read_data(file_name)
            for line_id, line in enumerate(data):
                fs = line.strip().split('\t')
                dnn_input = load_dnn_input_record(fs[0])
                lr_input = load_lr_input_record(fs[1])
                if not mode.is_infer():
                    click = int(fs[2])
                    yield [dnn_input, lr_input, click]
                else:
                    yield [dnn_input, lr_input]

        return _parse


def load_data_meta():
    '''
    load data meta info from path, return (dnn_input_dim, lr_input_dim)
    '''
    lines = read_data('data.meta.txt')
    err_info = "wrong meta format"
    assert len(lines) == 2, err_info
166 167 168
    assert (
        'dnn_input_dim:' in lines[0] and 'lr_input_dim:' in lines[1]
    ), err_info
169 170 171 172 173
    res = map(int, [_.split(':')[1] for _ in lines])
    res = list(res)
    logger.info('dnn input dim: %d' % res[0])
    logger.info('lr input dim: %d' % res[1])
    return res