fetcher.py 5.2 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14
#   Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

15 16
import logging
from ..log_helper import get_logger
17
from collections.abc import Sequence, Mapping
18

19
_WARNING_TO_LOG = True
20

21

22
class _DatasetFetcher:
23
    def __init__(self, dataset, auto_collate_batch, collate_fn, drop_last):
24
        self.dataset = dataset
25
        self.auto_collate_batch = auto_collate_batch
26 27 28
        self.collate_fn = collate_fn
        self.drop_last = drop_last

29 30 31 32 33 34 35 36 37 38
    # NOTE: fetch function here perform the whole pipeline of dataset
    #       reading and data trasforms of a batch in each calling, this
    #       may take a long time inside, if DataLoader is exit outside,
    #       fetch need to perceive exit situation, so we pass done_event
    #       here for fetch to check exit status
    # NOTE: if DataLoadet exit by `break`, performing GPU tensor operations,
    #       e.g. to_tensor may cause SIGSEGV in thread, so we pass the
    #       done_event argument to check DataLoader exit status between
    #       ecah sample processing in the batch
    def fetch(self, batch_indices, done_event=None):
39 40 41
        raise NotImplementedError(
            "'fetch' not implement for class {}".format(self.__class__.__name__)
        )
42

43
    def _log_warning(self):
44 45
        # only log warning on GPU 0 when distributed launch
        from ...distributed import get_world_size, get_rank
46

47 48 49
        if get_world_size() >= 2 and get_rank() != 0:
            return

50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79
        warn_str = (
            "Detect dataset only contains single fileds, return format "
            "changed since Paddle 2.1. In Paddle <= 2.0, DataLoader add "
            "a list surround output data(e.g. return [data]), and in "
            "Paddle >= 2.1, DataLoader return the single filed directly "
            "(e.g. return data). For example, in following code: \n\n"
        )
        warn_str += (
            "import numpy as np\n"
            "from paddle.io import DataLoader, Dataset\n\n"
            "class RandomDataset(Dataset):\n"
            "    def __getitem__(self, idx):\n"
            "        data = np.random.random((2, 3)).astype('float32')\n\n"
            "        return data\n\n"
            "    def __len__(self):\n"
            "        return 10\n\n"
            "dataset = RandomDataset()\n"
            "loader = DataLoader(dataset, batch_size=1)\n"
            "data = next(loader())\n\n"
        )

        warn_str += (
            "In Paddle <= 2.0, data is in format '[Tensor(shape=(1, 2, 3), "
            "dtype=float32)]', and in Paddle >= 2.1, data is in format"
            " 'Tensor(shape=(1, 2, 3), dtype=float32)'\n"
        )

        logger = get_logger(
            "DataLoader", logging.INFO, fmt='%(levelname)s: %(message)s'
        )
80 81
        logger.warning(warn_str)

82 83

class _IterableDatasetFetcher(_DatasetFetcher):
84
    def __init__(self, dataset, auto_collate_batch, collate_fn, drop_last):
85
        super().__init__(dataset, auto_collate_batch, collate_fn, drop_last)
86 87
        self.dataset_iter = iter(dataset)

88
    def fetch(self, batch_indices, done_event=None):
89

90 91 92
        if self.auto_collate_batch:
            data = []
            for _ in batch_indices:
93 94 95 96 97 98 99
                if done_event is None or not done_event.is_set():
                    try:
                        data.append(next(self.dataset_iter))
                    except StopIteration:
                        break
                else:
                    return None
100

101 102 103
            if len(data) == 0 or (
                self.drop_last and len(data) < len(batch_indices)
            ):
104
                raise StopIteration
105 106

            global _WARNING_TO_LOG
107
            if not isinstance(data[0], (Sequence, Mapping)) and _WARNING_TO_LOG:
108
                self._log_warning()
109
                _WARNING_TO_LOG = False
110 111 112 113 114 115
        else:
            data = next(self.dataset_iter)

        if self.collate_fn:
            data = self.collate_fn(data)
        return data
116 117 118


class _MapDatasetFetcher(_DatasetFetcher):
119
    def __init__(self, dataset, auto_collate_batch, collate_fn, drop_last):
120
        super().__init__(dataset, auto_collate_batch, collate_fn, drop_last)
121

122
    def fetch(self, batch_indices, done_event=None):
123
        if self.auto_collate_batch:
124 125 126 127 128 129
            data = []
            for idx in batch_indices:
                if done_event is None or not done_event.is_set():
                    data.append(self.dataset[idx])
                else:
                    return None
130

131
            global _WARNING_TO_LOG
132
            if not isinstance(data[0], (Sequence, Mapping)) and _WARNING_TO_LOG:
133
                self._log_warning()
134
                _WARNING_TO_LOG = False
135 136 137 138 139 140
        else:
            data = self.dataset[batch_indices]

        if self.collate_fn:
            data = self.collate_fn(data)
        return data