tunable_variable.py 7.9 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14
#   Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

15
# Notice that the following codes are modified from KerasTuner to implement our own tuner.
16 17
# Please refer to https://github.com/keras-team/keras-tuner/blob/master/keras_tuner/engine/hyperparameters.py.

18 19 20
import numpy as np


21
class TunableVariable:
22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47
    """
    Tunablevariable base class.
    """

    def __init__(self, name, default=None):
        self.name = name
        self._default = default

    @property
    def default(self):
        return self._default

    def get_state(self):
        return {"name": self.name, "default": self.default}

    @classmethod
    def from_state(cls, state):
        return cls(**state)


class Fixed(TunableVariable):
    """
    Fixed variable which cannot be changed.
    """

    def __init__(self, name, default):
48
        super().__init__(name=name, default=default)
49 50 51
        self.name = name
        if not isinstance(default, (str, int, float, bool)):
            raise ValueError(
52
                "Fixed must be an str, int, float or bool, but found {}".format(
53 54 55
                    default
                )
            )
56 57 58 59 60 61 62 63 64 65 66 67 68 69 70
        self._default = default

    def random(self, seed=None):
        return self._default

    def __repr__(self):
        return "Fixed(name: {}, value: {})".format(self.name, self.default)


class Boolean(TunableVariable):
    """
    Choice between True and False.
    """

    def __init__(self, name, default=False):
71
        super().__init__(name=name, default=default)
72 73
        if default not in {True, False}:
            raise ValueError(
74 75
                "default must be a Python boolean, but got {}".format(default)
            )
76 77 78 79 80 81

    def random(self, seed=None):
        rng = np.random.default_rng(seed)
        return rng.choice((True, False))

    def __repr__(self):
82
        return 'Boolean(name: "{}", default: {})'.format(
83 84
            self.name, self.default
        )
85 86 87 88


class Choice(TunableVariable):
    def __init__(self, name, values, default=None):
89
        super().__init__(name=name, default=default)
90 91 92 93

        types = set(type(v) for v in values)
        if len(types) > 1:
            raise TypeError(
94 95 96 97
                "Choice can contain only one type of value, but found values: {} with types: {}.".format(
                    str(values), str(types)
                )
            )
98
        self._is_unknown_type = False
99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116

        if isinstance(values[0], str):
            values = [str(v) for v in values]
            if default is not None:
                default = str(default)
        elif isinstance(values[0], int):
            values = [int(v) for v in values]
            if default is not None:
                default = int(default)
        elif isinstance(values[0], float):
            values = [float(v) for v in values]
            if default is not None:
                default = float(default)
        elif isinstance(values[0], bool):
            values = [bool(v) for v in values]
            if default is not None:
                default = bool(default)
        else:
117 118
            self._is_unknown_type = True
            self._indices = [i for i in range(len(values))]
119 120 121 122
        self.values = values

        if default is not None and default not in values:
            raise ValueError(
123 124 125 126
                "The default value should be one of the choices {}, but found {}".format(
                    values, default
                )
            )
127 128 129 130 131 132 133 134 135 136 137 138
        self._default = default

    @property
    def default(self):
        if self._default is None:
            if None in self.values:
                return None
            return self.values[0]
        return self._default

    def random(self, seed=None):
        rng = np.random.default_rng(seed)
139 140 141 142 143
        if self._is_unknown_type:
            indice = rng.choice(self._indices)
            return self.values[indice]
        else:
            return rng.choice(self.values)
144 145

    def get_state(self):
146
        state = super().get_state()
147 148 149 150 151
        state["values"] = self.values
        return state

    def __repr__(self):
        return 'Choice(name: "{}", values: {}, default: {})'.format(
152 153
            self.name, self.values, self.default
        )
154 155 156 157 158 159 160 161


class IntRange(TunableVariable):
    """
    Integer range.
    """

    def __init__(self, name, start, stop, step=1, default=None, endpoint=False):
162
        super().__init__(name=name, default=default)
163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187
        self.start = self._check_int(start)
        self.stop = self._check_int(stop)
        self.step = self._check_int(step)
        self._default = default
        self.endpoint = endpoint

    @property
    def default(self):
        if self._default is not None:
            return self._default
        return self.start

    def random(self, seed=None):
        rng = np.random.default_rng(seed)
        value = (self.stop - self.start) * rng.random() + self.start
        if self.step is not None:
            if self.endpoint:
                values = np.arange(self.start, self.stop + 1e-7, step=self.step)
            else:
                values = np.arange(self.start, self.stop, step=self.step)
            closest_index = np.abs(values - value).argmin()
            value = values[closest_index]
        return int(value)

    def get_state(self):
188
        state = super().get_state()
189 190 191 192 193 194 195 196 197
        state["start"] = self.start
        state["stop"] = self.stop
        state["step"] = self.step
        state["default"] = self._default
        return state

    def _check_int(self, val):
        int_val = int(val)
        if int_val != val:
198 199 200
            raise ValueError(
                "Expects val is an int, but found: {}.".format(str(val))
            )
201 202 203 204
        return int_val

    def __repr__(self):
        return "IntRange(name: {}, start: {}, stop: {}, step: {}, default: {})".format(
205 206
            self.name, self.start, self.stop, self.step, self.default
        )
207 208 209 210 211 212 213


class FloatRange(TunableVariable):
    """
    Float range.
    """

214 215 216
    def __init__(
        self, name, start, stop, step=None, default=None, endpoint=False
    ):
217
        super().__init__(name=name, default=default)
218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245
        self.stop = float(stop)
        self.start = float(start)
        if step is not None:
            self.step = float(step)
        else:
            self.step = None
        self._default = default
        self.endpoint = endpoint

    @property
    def default(self):
        if self._default is not None:
            return self._default
        return self.start

    def random(self, seed=None):
        rng = np.random.default_rng(seed)
        value = (self.stop - self.start) * rng.random() + self.start
        if self.step is not None:
            if self.endpoint:
                values = np.arange(self.start, self.stop + 1e-7, step=self.step)
            else:
                values = np.arange(self.start, self.stop, step=self.step)
            closest_index = np.abs(values - value).argmin()
            value = values[closest_index]
        return value

    def get_state(self):
246
        state = super().get_state()
247 248 249 250 251 252 253 254
        state["start"] = self.start
        state["stop"] = self.stop
        state["step"] = self.step
        state["endpoint"] = self.endpoint
        return state

    def __repr__(self):
        return "FloatRange(name: {}, start: {}, stop: {}, step: {}, default: {}, endpoint: {})".format(
255 256 257 258 259 260 261
            self.name,
            self.start,
            self.stop,
            self.step,
            self.default,
            self.endpoint,
        )