tunable_space.py 4.9 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14
#   Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

15
# Notice that the following codes are modified from KerasTuner to implement our own tuner.
16 17
# Please refer to https://github.com/keras-team/keras-tuner/blob/master/keras_tuner/engine/hyperparameters.py.

18 19 20 21 22 23 24
from .tunable_variable import Boolean
from .tunable_variable import Fixed
from .tunable_variable import Choice
from .tunable_variable import IntRange
from .tunable_variable import FloatRange


25
class TunableSpace:
26 27 28 29 30 31 32 33 34 35 36 37 38 39
    """
    A TunableSpace is constructed by the tunable variables.
    """

    def __init__(self):
        # Tunable variables for this tunable variables
        self._variables = {}
        # Specific values coresponding to each tunable variable
        self._values = {}

    @property
    def variables(self):
        return self._variables

40 41 42 43
    @variables.setter
    def variables(self, variables):
        self._variables = variables

44 45 46 47
    @property
    def values(self):
        return self._values

48 49 50 51
    @values.setter
    def values(self, values):
        self._values = values

52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106
    def get_value(self, name):
        if name in self.values:
            return self.values[name]
        else:
            raise KeyError("{} does not exist.".format(name))

    def set_value(self, name, value):
        if name in self.values:
            self.values[name] = value
        else:
            raise KeyError("{} does not exist.".format(name))

    def _exists(self, name):
        if name in self._variables:
            return True
        return False

    def _retrieve(self, tv):
        tv = tv.__class__.from_state(tv.get_state())
        if self._exists(tv.name):
            return self.get_value(tv.name)
        return self._register(tv)

    def _register(self, tv):
        self._variables[tv.name] = tv
        if tv.name not in self.values:
            self.values[tv.name] = tv.default
        return self.values[tv.name]

    def __getitem__(self, name):
        return self.get_value(name)

    def __setitem__(self, name, value):
        self.set_value(name, value)

    def __contains__(self, name):
        try:
            self.get_value(name)
            return True
        except (KeyError, ValueError):
            return False

    def fixed(self, name, default):
        tv = Fixed(name=name, default=default)
        return self._retrieve(tv)

    def boolean(self, name, default=False):
        tv = Boolean(name=name, default=default)
        return self._retrieve(tv)

    def choice(self, name, values, default=None):
        tv = Choice(name=name, values=values, default=default)
        return self._retrieve(tv)

    def int_range(self, name, start, stop, step=1, default=None):
107 108 109
        tv = IntRange(
            name=name, start=start, stop=stop, step=step, default=default
        )
110 111 112
        return self._retrieve(tv)

    def float_range(self, name, start, stop, step=None, default=None):
113 114 115
        tv = FloatRange(
            name=name, start=start, stop=stop, step=step, default=default
        )
116 117 118 119
        return self._retrieve(tv)

    def get_state(self):
        return {
120 121 122 123 124
            "variables": [
                {"class_name": v.__class__.__name__, "state": v.get_state()}
                for v in self._variables.values()
            ],
            "values": dict((k, v) for (k, v) in self.values.items()),
125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143
        }

    @classmethod
    def from_state(cls, state):
        ts = cls()
        for v in state["variables"]:
            v = _deserialize_tunable_variable(v)
            ts._variables[v.name] = v
        ts._values = dict((k, v) for (k, v) in state["values"].items())
        return ts


def _deserialize_tunable_variable(state):
    classes = (Boolean, Fixed, Choice, IntRange, FloatRange)
    cls_name_to_cls = {cls.__name__: cls for cls in classes}

    if isinstance(state, classes):
        return state

144 145 146 147 148
    if (
        not isinstance(state, dict)
        or "class_name" not in state
        or "state" not in state
    ):
149
        raise ValueError(
150 151 152 153
            "Expect state to be a python dict containing class_name and state as keys, but found {}".format(
                state
            )
        )
154 155 156 157 158 159 160 161 162

    cls_name = state["class_name"]
    cls = cls_name_to_cls[cls_name]
    if cls is None:
        raise ValueError("Unknown class name {}".format(cls_name))

    cls_state = state["state"]
    deserialized_object = cls.from_state(cls_state)
    return deserialized_object