FunctionTest.h 12.7 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserve.

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

    http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */

#include "Function.h"
16 17
#include "paddle/math/Matrix.h"
#include "paddle/math/SparseMatrix.h"
18
#include "paddle/math/tests/TensorCheck.h"
H
hedaoyuan 已提交
19
#include "paddle/testing/TestUtil.h"
20 21 22

namespace paddle {

H
hedaoyuan 已提交
23 24
typedef std::shared_ptr<BufferArg> BufferArgPtr;

H
hedaoyuan 已提交
25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47
/**
 * \brief A class for comparing CPU and GPU implementations of Function.
 *
 *
 * Use case:
 *  // Initializes a test object, the corresponding cpu and gpu Function
 *  // are constructed according to FunctionName and FuncConfig.
 *  FunctionCompare test(FunctionName, FuncConfig);
 *  // Prepare inputs and outputs arguments.
 *  // Here the input and output can not contain real data,
 *  // only contains the argument type and shape.
 *  test.addInputs(input1);
 *  test.addInputs(input2);
 *  test.addOutputs(output1);
 *  test.addOutputs(output2);
 *  // Run.
 *  // Will according to the type and shape of arguments(inputs_/outputs_),
 *  // automatic initialization cpu and gpu function required arguments
 *  // (cpuInputs_/cpuOutputs_/gpuInputs_/gpuOutputs_).
 *  // Call the CPU and GPU Function calculation results.
 *  // Compares CPU and GPU calculation results for consistency.
 *  test.run();
 */
48 49 50
class FunctionCompare {
public:
  FunctionCompare(const std::string& name, const FuncConfig& config)
H
hedaoyuan 已提交
51 52 53 54 55 56 57 58 59 60 61 62 63 64 65
      : cpuFunc_(FunctionBase::funcRegistrar_.createByType(name + "-CPU")),
        gpuFunc_(FunctionBase::funcRegistrar_.createByType(name + "-GPU")) {
    cpuFunc_->init(config);
    gpuFunc_->init(config);
  }

  ~FunctionCompare() {}

  // input need only contains shape, do not contains data.
  void addInputs(const BufferArg& input) {
    size_t size =
        input.shape().getElements() * sizeOfValuType(input.valueType());
    cpuMemory_.emplace_back(std::make_shared<CpuMemoryHandle>(size));
    gpuMemory_.emplace_back(std::make_shared<GpuMemoryHandle>(size));

X
xutianbing 已提交
66 67 68 69
    cpuInputs_.emplace_back(std::make_shared<BufferArg>(
        cpuMemory_.back()->getBuf(), input.valueType(), input.shape()));
    gpuInputs_.emplace_back(std::make_shared<BufferArg>(
        gpuMemory_.back()->getBuf(), input.valueType(), input.shape()));
H
hedaoyuan 已提交
70 71
  }

72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119
  // assume one copy of sequence is shared by different SequenceArgs
  void addSequence(const SequenceIdArg& input) {
    CHECK_EQ(input.shape().ndims(), 1UL);
    size_t batchSize = input.shape()[0];
    size_t numSeqs = batchSize / 10 + 1;
    size_t sizeId = (numSeqs + 1) * sizeOfValuType(VALUE_TYPE_INT32);
    cpuMemory_.emplace_back(std::make_shared<CpuMemoryHandle>(sizeId));
    gpuMemory_.emplace_back(std::make_shared<GpuMemoryHandle>(sizeId));
    cpuSeq_ = std::make_shared<SequenceIdArg>(cpuMemory_.back()->getBuf(),
                                              TensorShape{numSeqs + 1});
    gpuSeq_ = std::make_shared<SequenceIdArg>(gpuMemory_.back()->getBuf(),
                                              TensorShape{numSeqs + 1});
    /// init sequence Id
    initArg(*cpuSeq_, batchSize);

    // todo(tianbing), delete it
    CHECK_EQ(cpuSeq_->shape().getElements(), cpuSeq_->numSeqs() + 1);

    CpuIVector cpuSeq(cpuSeq_->shape().getElements(), (int*)cpuSeq_->data());
    GpuIVector gpuSeq(gpuSeq_->shape().getElements(), (int*)gpuSeq_->data());
    gpuSeq.copyFrom(cpuSeq);
  }

  void addInputs(const SequenceArg& input) {
    CHECK_EQ(input.shape().ndims(), 2UL);
    size_t batchSize = input.shape()[0];
    if (!cpuSeq_ || !gpuSeq_) {  // sequence not exist
      addSequence(SequenceIdArg(TensorShape{batchSize}));
    }

    size_t size =
        input.shape().getElements() * sizeOfValuType(input.valueType());
    cpuMemory_.emplace_back(std::make_shared<CpuMemoryHandle>(size));
    gpuMemory_.emplace_back(std::make_shared<GpuMemoryHandle>(size));

    /// SequenceArg
    cpuInputs_.emplace_back(
        std::make_shared<SequenceArg>(cpuMemory_.back()->getBuf(),
                                      input.valueType(),
                                      input.shape(),
                                      *cpuSeq_));
    gpuInputs_.emplace_back(
        std::make_shared<SequenceArg>(gpuMemory_.back()->getBuf(),
                                      input.valueType(),
                                      input.shape(),
                                      *gpuSeq_));
  }

H
hedaoyuan 已提交
120
  // output need only contains shape, do not contains data.
X
xutianbing 已提交
121
  void addOutputs(const BufferArg& output, ArgType argType = ASSIGN_TO) {
H
hedaoyuan 已提交
122 123 124 125 126
    size_t size =
        output.shape().getElements() * sizeOfValuType(output.valueType());
    cpuMemory_.emplace_back(std::make_shared<CpuMemoryHandle>(size));
    gpuMemory_.emplace_back(std::make_shared<GpuMemoryHandle>(size));

127 128 129 130 131 132 133 134 135 136
    cpuOutputs_.emplace_back(
        std::make_shared<BufferArg>(cpuMemory_.back()->getBuf(),
                                    output.valueType(),
                                    output.shape(),
                                    argType));
    gpuOutputs_.emplace_back(
        std::make_shared<BufferArg>(gpuMemory_.back()->getBuf(),
                                    output.valueType(),
                                    output.shape(),
                                    argType));
137 138
  }

139 140
  /// add and init output sparse matrix
  void addOutputs(const SparseMatrixArg& output, ArgType argType = ASSIGN_TO) {
141 142 143 144 145 146 147 148 149 150 151 152 153
    cpuSparse_ = std::make_shared<CpuSparseMatrix>(
        output.shape()[0],
        output.shape()[1],
        output.nnz(),
        static_cast<SparseValueType>(output.dataType()),
        static_cast<SparseFormat>(output.dataFormat()));

    gpuSparse_ = std::make_shared<GpuSparseMatrix>(
        output.shape()[0],
        output.shape()[1],
        output.nnz(),
        static_cast<SparseValueType>(output.dataType()),
        static_cast<SparseFormat>(output.dataFormat()));
154 155 156 157 158 159

    /// init sparse matrix
    hl_stream_t stream(HPPL_STREAM_1);
    cpuSparse_->randomizeUniform();
    gpuSparse_->copyFrom(*cpuSparse_, stream);
    hl_stream_synchronize(stream);
160 161 162
  void addInputs(const SequenceArg& input) {
    size_t batchSize = input.shape()[0];
    size_t numSeqs = batchSize / 10 + 1;
163 164 165 166 167 168 169

    cpuOutputs_.emplace_back(
        std::make_shared<SparseMatrixArg>(*cpuSparse_, argType));
    gpuOutputs_.emplace_back(
        std::make_shared<SparseMatrixArg>(*gpuSparse_, argType));
  }

170 171 172
  void addOutputs(const SequenceArg& output, ArgType argType = ASSIGN_TO) {
    CHECK_EQ(output.shape().ndims(), 2UL);
    size_t batchSize = output.shape()[0];
H
hedaoyuan 已提交
173

174 175 176
    if (!cpuSeq_ || !gpuSeq_) {  // sequence not exist
      addSequence(SequenceIdArg(TensorShape{batchSize}));
    }
H
hedaoyuan 已提交
177
    size_t size =
178
        output.shape().getElements() * sizeOfValuType(output.valueType());
H
hedaoyuan 已提交
179 180 181
    cpuMemory_.emplace_back(std::make_shared<CpuMemoryHandle>(size));
    gpuMemory_.emplace_back(std::make_shared<GpuMemoryHandle>(size));

182 183 184 185 186 187 188 189 190 191 192 193 194
    /// SequenceArg
    cpuOutputs_.emplace_back(
        std::make_shared<SequenceArg>(cpuMemory_.back()->getBuf(),
                                      output.valueType(),
                                      output.shape(),
                                      *cpuSeq_,
                                      argType));
    gpuOutputs_.emplace_back(
        std::make_shared<SequenceArg>(gpuMemory_.back()->getBuf(),
                                      output.valueType(),
                                      output.shape(),
                                      *gpuSeq_,
                                      argType));
H
hedaoyuan 已提交
195
  }
H
hedaoyuan 已提交
196

197
  void addInputs(const SparseMatrixArg& input) {
198 199 200 201 202 203 204 205 206 207 208 209 210
    cpuSparse_ = std::make_shared<CpuSparseMatrix>(
        input.shape()[0],
        input.shape()[1],
        input.nnz(),
        static_cast<SparseValueType>(input.dataType()),
        static_cast<SparseFormat>(input.dataFormat()));

    gpuSparse_ = std::make_shared<GpuSparseMatrix>(
        input.shape()[0],
        input.shape()[1],
        input.nnz(),
        static_cast<SparseValueType>(input.dataType()),
        static_cast<SparseFormat>(input.dataFormat()));
211 212 213 214 215 216 217 218 219 220 221

    /// init sparse matrix
    hl_stream_t stream(HPPL_STREAM_1);
    cpuSparse_->randomizeUniform();
    gpuSparse_->copyFrom(*cpuSparse_, stream);
    hl_stream_synchronize(stream);

    cpuInputs_.emplace_back(std::make_shared<SparseMatrixArg>(*cpuSparse_));
    gpuInputs_.emplace_back(std::make_shared<SparseMatrixArg>(*gpuSparse_));
  }

H
hedaoyuan 已提交
222 223
  void run() {
    // prepare cpu/gpu arguments
H
hedaoyuan 已提交
224
    initInputs();
H
hedaoyuan 已提交
225

226
    initOutputs();
H
hedaoyuan 已提交
227
    // function calculate
H
hedaoyuan 已提交
228 229 230 231 232 233 234
    auto callFunction = [](FunctionBase* function,
                           std::vector<BufferArgPtr>& inputs,
                           std::vector<BufferArgPtr>& outputs) {
      BufferArgs inArgs;
      BufferArgs outArgs;
      for (auto arg : inputs) {
        inArgs.addArg(*arg);
H
hedaoyuan 已提交
235
      }
H
hedaoyuan 已提交
236 237
      for (auto arg : outputs) {
        outArgs.addArg(*arg);
238
      }
H
hedaoyuan 已提交
239
      function->calc(inArgs, outArgs);
240 241
    };

H
hedaoyuan 已提交
242 243
    callFunction(cpuFunc_.get(), cpuInputs_, cpuOutputs_);
    callFunction(gpuFunc_.get(), gpuInputs_, gpuOutputs_);
244

245
    // check outputs
H
hedaoyuan 已提交
246
    compareOutputs();
247 248
  }

H
hedaoyuan 已提交
249
  std::shared_ptr<FunctionBase> getCpuFunction() const { return cpuFunc_; }
250

H
hedaoyuan 已提交
251
  std::shared_ptr<FunctionBase> getGpuFunction() const { return gpuFunc_; }
252

H
hedaoyuan 已提交
253
protected:
254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280
  // only init cpu argument, gpu argument copy from cpu argument.
  void initArg(BufferArg& arg) {
    CpuVector vector(arg.shape().getElements(), (real*)arg.data());
    vector.uniform(0.001, 1);
  }

  void initArg(SequenceArg& arg) {
    /// init only matrix
    CpuVector vector(arg.shape().getElements(), (real*)arg.data());
    vector.uniform(0.001, 1);
  }

  void initArg(SequenceIdArg& arg, size_t batchSize) {
    size_t numSeqs = arg.numSeqs();
    int* buf = reinterpret_cast<int*>(arg.data());
    int pos = 0;
    size_t maxLen = 2 * batchSize / numSeqs;
    for (int i = 0; i < (int)numSeqs; ++i) {
      int len = 1 + uniformRandom(std::min<int64_t>(
                        maxLen, batchSize - pos - numSeqs + i));
      buf[i] = pos;
      pos += len;
      VLOG(1) << " len=" << len;
    }
    buf[numSeqs] = batchSize;
  }

H
hedaoyuan 已提交
281 282
  void initInputs() {
    for (size_t i = 0; i < cpuInputs_.size(); i++) {
283 284 285 286
      if (cpuInputs_[i]->isSparseArg()) {
        continue;  /// sparse matrix already init
      }

287 288 289 290 291
      if (cpuInputs_[i]->isSequenceArg()) {
        initArg(dynamic_cast<SequenceArg&>(*cpuInputs_[i]));
      } else {
        initArg(*cpuInputs_[i]);
      }
H
hedaoyuan 已提交
292 293 294 295 296
      // TODO: Need a BufferCopy used to copy from one BufferArg to another.
      CpuVector cpuVector(cpuInputs_[i]->shape().getElements(),
                          (real*)cpuInputs_[i]->data());
      GpuVector gpuVector(gpuInputs_[i]->shape().getElements(),
                          (real*)gpuInputs_[i]->data());
H
hedaoyuan 已提交
297

H
hedaoyuan 已提交
298 299
      gpuVector.copyFrom(cpuVector);
    }
H
hedaoyuan 已提交
300 301
  }

302 303 304
  void initOutputs() {
    for (size_t i = 0; i < cpuOutputs_.size(); i++) {
      if (cpuOutputs_[i]->isSparseArg()) {
305
        continue;  /// sparse matrix already init
306 307
      }

308 309 310 311 312
      if (cpuOutputs_[i]->isSequenceArg()) {
        initArg(dynamic_cast<SequenceArg&>(*cpuOutputs_[i]));
      } else {
        initArg(*cpuOutputs_[i]);
      }
313 314 315 316 317 318 319 320 321 322 323

      // TODO: Need a BufferCopy used to copy from one BufferArg to another.
      CpuVector cpuVector(cpuOutputs_[i]->shape().getElements(),
                          (real*)cpuOutputs_[i]->data());
      GpuVector gpuVector(gpuOutputs_[i]->shape().getElements(),
                          (real*)gpuOutputs_[i]->data());

      gpuVector.copyFrom(cpuVector);
    }
  }

H
hedaoyuan 已提交
324 325 326
  void compareOutputs() {
    for (size_t i = 0; i < cpuOutputs_.size(); i++) {
      // TODO, Need a BufferCheck used to compare the two buffers.
327 328 329 330 331
      const auto cpu = cpuOutputs_[i];
      const auto gpu = gpuOutputs_[i];
      CHECK_EQ(cpu->numElements(), gpu->numElements());
      CpuVector cpuVector(cpu->numElements(), (real*)cpu->data());
      GpuVector gpuVector(gpu->numElements(), (real*)gpu->data());
H
hedaoyuan 已提交
332 333
      autotest::TensorCheckErr(cpuVector, gpuVector);
    }
H
hedaoyuan 已提交
334 335
  }

336
protected:
337
<<<<<<< HEAD
H
hedaoyuan 已提交
338 339
  std::shared_ptr<FunctionBase> cpuFunc_;
  std::shared_ptr<FunctionBase> gpuFunc_;
H
hedaoyuan 已提交
340 341
  std::vector<CpuMemHandlePtr> cpuMemory_;
  std::vector<GpuMemHandlePtr> gpuMemory_;
H
hedaoyuan 已提交
342 343 344 345
  std::vector<BufferArgPtr> cpuInputs_;
  std::vector<BufferArgPtr> cpuOutputs_;
  std::vector<BufferArgPtr> gpuInputs_;
  std::vector<BufferArgPtr> gpuOutputs_;
346 347
  std::shared_ptr<CpuSparseMatrix> cpuSparse_;
  std::shared_ptr<GpuSparseMatrix> gpuSparse_;
348 349
  std::shared_ptr<SequenceIdArg> cpuSeq_;
  std::shared_ptr<SequenceIdArg> gpuSeq_;
350 351 352
};

}  // namespace paddle