op_registry.h 14.9 KB
Newer Older
F
fengjiayi 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserve.

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

    http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */

15 16
#pragma once

17
#include <algorithm>
18
#include <atomic>
Y
Yu Yang 已提交
19
#include <type_traits>
20 21
#include <unordered_map>
#include <unordered_set>
Y
Yi Wang 已提交
22
#include "paddle/framework/attribute.h"
F
fengjiayi 已提交
23
#include "paddle/framework/grad_op_builder.h"
24
#include "paddle/framework/op_desc.pb.h"
D
dongzhihong 已提交
25
#include "paddle/framework/scope.h"
26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41

namespace paddle {
namespace framework {

// helper class to set attribute type
struct AttrTypeHelper {
  template <typename T>
  static void SetAttrType(AttrProto* attr);
};

// this class not only make proto but also init attribute checkers.
class OpProtoAndCheckerMaker {
 public:
  OpProtoAndCheckerMaker(OpProto* proto, OpAttrChecker* op_checker)
      : proto_(proto), op_checker_(op_checker) {}

42 43 44 45 46 47 48 49
  ~OpProtoAndCheckerMaker() {
    PADDLE_ENFORCE(validated_, "should call Validate after build");
  }

  void Validate() {
    validated_ = true;
    CheckNoDuplicatedInOutAttrs();
  }
50

51
 protected:
Y
Yu Yang 已提交
52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77
  struct VariableBuilder {
    VarProto* var_;
    std::function<void()> on_multiple_;
    std::function<void()> on_temporary_;

    VariableBuilder& SetMultiple() {
      var_->set_multiple(true);
      on_multiple_();
      return *this;
    }

    VariableBuilder& SetTemporary() {
      PADDLE_ENFORCE(bool(on_temporary_), "Cannot set temporary");
      var_->set_temporary(true);
      on_temporary_();
      return *this;
    }

    VariableBuilder& IgnoreGradient() {
      var_->set_ignore_gradient(true);
      return *this;
    }
  };

  VariableBuilder AddInput(const std::string& name,
                           const std::string& comment) {
78
    auto input = proto_->mutable_inputs()->Add();
79 80
    *input->mutable_name() = name;
    *input->mutable_comment() = comment;
Y
Yu Yang 已提交
81 82
    return VariableBuilder{input, [=] { this->SetHasMultipleInput(); },
                           nullptr};
83 84
  }

Y
Yu Yang 已提交
85 86
  VariableBuilder AddOutput(const std::string& name,
                            const std::string& comment) {
87
    auto output = proto_->mutable_outputs()->Add();
88 89
    *output->mutable_name() = name;
    *output->mutable_comment() = comment;
Y
Yu Yang 已提交
90 91
    return VariableBuilder{output, [=] { this->SetHasMultipleOutput(); },
                           [=] { this->SetHasTemporaryOutput(); }};
92 93 94 95
  }

  template <typename T>
  TypedAttrChecker<T>& AddAttr(const std::string& name,
96 97
                               const std::string& comment,
                               bool generated = false) {
98
    auto attr = proto_->mutable_attrs()->Add();
99 100
    *attr->mutable_name() = name;
    *attr->mutable_comment() = comment;
101
    attr->set_generated(generated);
Y
Yi Wang 已提交
102
    attr->set_type(AttrTypeID<T>());
103 104 105 106 107 108 109
    return op_checker_->AddAttrChecker<T>(name);
  }

  void AddComment(const std::string& comment) {
    *(proto_->mutable_comment()) = comment;
  }

110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157
 private:
  void SetHasMultiple(const std::string& in_out, bool* flag) {
    if (!*flag) {
      AddAttr<std::vector<int>>(in_out + "_format",
                                "The multiple index of " + in_out +
                                    "\n"
                                    R"DOC(
This attribute is used by Paddle core framework. Paddle's Op support each input
or output could be a list of variable. This attribute is used to show how that
list organized.

e.g.
  input = ["a", "b", "c", "d", "e", "f"]
  input_format = [0, 4, 5, 6]

means
  The number of all input variables this op is six, and they are segmented into
  three inputs.

  The first input is input[0:4], second is input[4:5], third is input[5:6].
)DOC",
                                /*generated*/ true);
      *flag = true;
    }
  }

  void SetHasMultipleInput() { SetHasMultiple("input", &has_multiple_input_); }
  void SetHasMultipleOutput() {
    SetHasMultiple("output", &has_multiple_output_);
  }

  void SetHasTemporaryOutput() {
    if (!has_temporary_output_) {
      AddAttr<std::vector<int>>("temporary_index",
                                R"DOC(The temporary index of output.

Not all output of Paddle Op is used by user. For faster computation, each op
could output some its internal state to other op, other op could take that
output to make compute faster.

Add a mark to which output is temporary is helpful for future optimization.
)DOC",
                                /*generated*/ true)
          .SetDefault(std::vector<int>());
      has_temporary_output_ = true;
    }
  }

158
  void CheckNoDuplicatedInOutAttrs() {
159
    std::unordered_set<std::string> names;
160 161 162 163
    auto checker = [&](const std::string& name) {
      PADDLE_ENFORCE(!names.count(name), "[%s] is duplicated", name);
      names.insert(name);
    };
164
    for (auto& attr : proto_->attrs()) {
165 166 167 168 169 170 171
      checker(attr.name());
    }
    for (auto& input : proto_->inputs()) {
      checker(input.name());
    }
    for (auto& output : proto_->outputs()) {
      checker(output.name());
172 173 174
    }
  }

175 176
  OpProto* proto_;
  OpAttrChecker* op_checker_;
177
  bool validated_{false};
178 179 180
  bool has_multiple_input_{false};
  bool has_multiple_output_{false};
  bool has_temporary_output_{false};
181 182 183
};

class OpRegistry {
Q
Qiao Longfei 已提交
184
  using OpCreator = std::function<OperatorBase*()>;
Y
Yu Yang 已提交
185
  using VarIndexMap = std::unordered_map<std::string, int>;
Y
Yu Yang 已提交
186
  using VarNameList = std::vector<std::string>;
187 188 189 190

 public:
  template <typename OpType, typename ProtoMakerType>
  static void RegisterOp(const std::string& op_type) {
191
    op_creators()[op_type] = [] { return new OpType; };
192
    OpAttrChecker& op_checker = op_checkers()[op_type];
D
dongzhihong 已提交
193
    OpProto& op_proto = protos()[op_type];
194 195
    auto maker = ProtoMakerType(&op_proto, &op_checker);
    maker.Validate();
Y
Yu Yang 已提交
196 197 198 199 200
    *op_proto.mutable_type() = op_type;
    PADDLE_ENFORCE(
        op_proto.IsInitialized(),
        "Fail to initialize %s's OpProto, because %s is not initialized",
        op_type, op_proto.InitializationErrorString());
Y
Yu Yang 已提交
201 202 203 204 205 206 207 208 209 210 211

    VarIndexMaps()[op_type].reset(new VarIndexMap());
    auto& varmap = *VarIndexMaps()[op_type];
    int idx = 0;
    for (auto& var : op_proto.inputs()) {
      varmap[var.name()] = idx++;
    }
    idx = 0;
    for (auto& var : op_proto.outputs()) {
      varmap[var.name()] = idx++;
    }
212 213
  }

214 215 216 217 218
  template <typename GradOpType>
  static void RegisterGradOp(const std::string& op_type,
                             const std::string& grad_op_type) {
    op_creators()[grad_op_type] = [] { return new GradOpType; };
    grad_ops()[op_type] = grad_op_type;
F
fengjiayi 已提交
219 220
  }

Y
Yu Yang 已提交
221 222 223 224
  static std::shared_ptr<OperatorBase> CreateOp(const std::string& type,
                                                const VarNameList& inputs,
                                                const VarNameList& outputs,
                                                const AttributeMap& attrs) {
225 226
    auto op_create_it = op_creators().find(type);
    PADDLE_ENFORCE(op_create_it != op_creators().end(),
F
fengjiayi 已提交
227
                   "Operator %s cannot be found.", type);
228

Y
Yu Yang 已提交
229 230 231 232
    auto op = op_create_it->second();
    op->type_ = type;
    op->inputs_ = inputs;
    op->outputs_ = outputs;
F
fengjiayi 已提交
233

Y
Yu Yang 已提交
234 235
    op->attrs_ = attrs;
    op_checkers().at(type).Check(op->attrs_);
236

Y
Yu Yang 已提交
237
    GenerateTempVariableName(op);
238

Y
Yu Yang 已提交
239
    {
Y
Yu Yang 已提交
240
      auto var_index_it = VarIndexMaps().find(type);
Y
Yu Yang 已提交
241 242 243 244
      if (var_index_it != VarIndexMaps().end()) {
        op->in_out_idxs_ = var_index_it->second;
      }
    }
Y
Yu Yang 已提交
245

Q
Qiao Longfei 已提交
246
    op->Init();
Y
Yu Yang 已提交
247
    return std::shared_ptr<OperatorBase>(op);
248 249
  }

Y
Yu Yang 已提交
250
  static std::shared_ptr<OperatorBase> CreateOp(const OpDesc& op_desc) {
Y
Yu Yang 已提交
251 252
    std::vector<std::string> inputs;
    inputs.reserve((size_t)op_desc.inputs_size());
253
    std::copy(op_desc.inputs().begin(), op_desc.inputs().end(),
Y
Yu Yang 已提交
254 255 256 257
              std::back_inserter(inputs));

    std::vector<std::string> outputs;
    outputs.reserve((size_t)op_desc.outputs_size());
258
    std::copy(op_desc.outputs().begin(), op_desc.outputs().end(),
Y
Yu Yang 已提交
259 260 261
              std::back_inserter(outputs));

    AttributeMap attrs;
262
    for (auto& attr : op_desc.attrs()) {
Y
Yi Wang 已提交
263
      attrs[attr.name()] = GetAttrValue(attr);
264
    }
Y
Yu Yang 已提交
265 266

    return CreateOp(op_desc.type(), inputs, outputs, attrs);
267 268
  }

Y
Yu Yang 已提交
269 270
  static std::shared_ptr<OperatorBase> CreateGradOp(const OperatorBase& op) {
    PADDLE_ENFORCE(!op.IsNetOp(),
Y
Yu Yang 已提交
271
                   "Use framework::Backward to get backward ops");
272
    std::shared_ptr<OperatorBase> grad_op(BuildGradOp(&op));
F
fengjiayi 已提交
273 274
    grad_op->Init();
    return grad_op;
D
dongzhihong 已提交
275 276
  }

Y
Yu Yang 已提交
277 278 279 280 281
  static std::unordered_map<std::string, OpProto>& protos() {
    static std::unordered_map<std::string, OpProto> protos_;
    return protos_;
  };

282 283 284
  static std::unordered_map<std::string, std::string>& grad_ops() {
    static std::unordered_map<std::string, std::string> grad_ops_;
    return grad_ops_;
285 286
  }

Y
Yu Yang 已提交
287 288 289 290 291 292
  static std::unordered_map<std::string, std::shared_ptr<VarIndexMap>>&
  VarIndexMaps() {
    static std::unordered_map<std::string, std::shared_ptr<VarIndexMap>> maps_;
    return maps_;
  }

293 294 295
  static std::unordered_map<std::string, OpCreator>& op_creators() {
    static std::unordered_map<std::string, OpCreator> op_creators_;
    return op_creators_;
F
fengjiayi 已提交
296 297
  }

298
 private:
F
fengjiayi 已提交
299 300 301 302 303
  static std::unordered_map<std::string, OpAttrChecker>& op_checkers() {
    static std::unordered_map<std::string, OpAttrChecker> op_checkers_;
    return op_checkers_;
  };

304
  static void GenerateTempVariableName(OperatorBase* op) {
305 306 307
    static std::atomic<size_t> gUniqId(0UL);
    for (auto& outname : op->outputs_) {
      if (outname == OperatorBase::TMP_VAR_NAME()) {
308
        outname += op->type_;
309 310 311 312 313
        outname += "@";
        outname += std::to_string(gUniqId.fetch_add(1));
      }
    }
  }
314
};
315 316 317 318

template <typename OpType, typename ProtoMakerType>
class OpRegisterHelper {
 public:
Y
Yu Yang 已提交
319
  OpRegisterHelper(const char* op_type) {
320 321 322 323
    OpRegistry::RegisterOp<OpType, ProtoMakerType>(op_type);
  }
};

324
template <typename GradOpType>
D
dongzhihong 已提交
325 326
class GradOpRegisterHelper {
 public:
327 328
  GradOpRegisterHelper(const char* op_type, const char* grad_op_type) {
    OpRegistry::RegisterGradOp<GradOpType>(op_type, grad_op_type);
D
dongzhihong 已提交
329 330 331
  }
};

332 333 334
/**
 * check if MACRO is used in GLOBAL NAMESPACE.
 */
Y
Yu Yang 已提交
335 336 337 338 339 340
#define STATIC_ASSERT_GLOBAL_NAMESPACE(uniq_name, msg)                        \
  struct __test_global_namespace_##uniq_name##__ {};                          \
  static_assert(std::is_same<::__test_global_namespace_##uniq_name##__,       \
                             __test_global_namespace_##uniq_name##__>::value, \
                msg)

341 342 343
/**
 * Macro to Register Operator.
 */
Y
Yu Yang 已提交
344 345 346 347 348 349 350
#define REGISTER_OP(__op_type, __op_class, __op_maker_class)                 \
  STATIC_ASSERT_GLOBAL_NAMESPACE(__reg_op__##__op_type,                      \
                                 "REGISTER_OP must be in global namespace"); \
  static ::paddle::framework::OpRegisterHelper<__op_class, __op_maker_class> \
      __op_register_##__op_type##__(#__op_type);                             \
  int __op_register_##__op_type##_handle__() { return 0; }

D
dongzhihong 已提交
351
/**
F
fengjiayi 已提交
352
 * Macro to Register Gradient Operator.
D
dongzhihong 已提交
353
 */
354 355 356 357 358 359 360 361 362 363
#define REGISTER_GRADIENT_OP(__op_type, __grad_op_type, __grad_op_class)       \
  STATIC_ASSERT_GLOBAL_NAMESPACE(                                              \
      __reg_gradient_op__##__op_type##__grad_op_type,                          \
      "REGISTER_GRADIENT_OP must be in global namespace");                     \
  static ::paddle::framework::GradOpRegisterHelper<__grad_op_class>            \
      __op_gradient_register_##__op_type##__grad_op_type##__(#__op_type,       \
                                                             #__grad_op_type); \
  int __op_gradient_register_##__op_type##__grad_op_type##_handle__() {        \
    return 0;                                                                  \
  }
D
dongzhihong 已提交
364

D
dongzhihong 已提交
365 366 367 368 369 370 371 372
/**
 * Macro to Forbid user register Gradient Operator.
 */
#define NO_GRADIENT(__op_type)                          \
  STATIC_ASSERT_GLOBAL_NAMESPACE(                       \
      __reg_gradient_op__##__op_type##__op_type##_grad, \
      "NO_GRADIENT must be in global namespace")

373 374 375
/**
 * Macro to Register OperatorKernel.
 */
376
#define REGISTER_OP_KERNEL(type, DEVICE_TYPE, PlaceType, ...)             \
Y
Yu Yang 已提交
377
  STATIC_ASSERT_GLOBAL_NAMESPACE(                                         \
378
      __reg_op_kernel_##type##_##DEVICE_TYPE##__,                         \
Y
Yu Yang 已提交
379
      "REGISTER_OP_KERNEL must be in global namespace");                  \
Q
qijun 已提交
380 381
  struct __op_kernel_register__##type##__##DEVICE_TYPE##__ {              \
    __op_kernel_register__##type##__##DEVICE_TYPE##__() {                 \
Y
Yu Yang 已提交
382 383 384
      ::paddle::framework::OperatorWithKernel::OpKernelKey key;           \
      key.place_ = PlaceType();                                           \
      ::paddle::framework::OperatorWithKernel::AllOpKernels()[#type][key] \
385
          .reset(new __VA_ARGS__());                                      \
Y
Yu Yang 已提交
386 387
    }                                                                     \
  };                                                                      \
Q
qijun 已提交
388 389
  static __op_kernel_register__##type##__##DEVICE_TYPE##__                \
      __reg_kernel_##type##__##DEVICE_TYPE##__;                           \
390
  int __op_kernel_register_##type##_handle_##DEVICE_TYPE##__() { return 0; }
Y
Yu Yang 已提交
391

392 393 394
// (type, KernelType)
#define REGISTER_OP_GPU_KERNEL(type, ...) \
  REGISTER_OP_KERNEL(type, GPU, ::paddle::platform::GPUPlace, __VA_ARGS__)
Y
Yu Yang 已提交
395

396 397 398
// (type, KernelType)
#define REGISTER_OP_CPU_KERNEL(type, ...) \
  REGISTER_OP_KERNEL(type, CPU, ::paddle::platform::CPUPlace, __VA_ARGS__)
Y
Yu Yang 已提交
399

400 401 402 403
/**
 * Macro to mark what Operator and Kernel we will use and tell the compiler to
 * link them into target.
 */
Y
Yu Yang 已提交
404 405 406 407 408 409 410 411
#define USE_OP_WITHOUT_KERNEL(op_type)                      \
  STATIC_ASSERT_GLOBAL_NAMESPACE(                           \
      __use_op_without_kernel_##op_type,                    \
      "USE_OP_WITHOUT_KERNEL must be in global namespace"); \
  extern int __op_register_##op_type##_handle__();          \
  static int __use_op_ptr_##op_type##_without_kernel__      \
      __attribute__((unused)) = __op_register_##op_type##_handle__()

Y
Yu Yang 已提交
412 413 414 415 416 417 418 419
#define USE_OP_KERNEL(op_type, DEVICE_TYPE)                               \
  STATIC_ASSERT_GLOBAL_NAMESPACE(                                         \
      __use_op_kernel_##op_type##_##DEVICE_TYPE##__,                      \
      "USE_OP_KERNEL must be in global namespace");                       \
  extern int __op_kernel_register_##op_type##_handle_##DEVICE_TYPE##__(); \
  static int __use_op_ptr_##op_type##_##DEVICE_TYPE##_kernel__            \
      __attribute__((unused)) =                                           \
          __op_kernel_register_##op_type##_handle_##DEVICE_TYPE##__()
Y
Yu Yang 已提交
420

421 422
// use Operator with only cpu kernel.
#define USE_OP_CPU(op_type)       \
Y
Yu Yang 已提交
423
  USE_OP_WITHOUT_KERNEL(op_type); \
424
  USE_OP_KERNEL(op_type, CPU)
Y
Yu Yang 已提交
425

426 427
#ifdef PADDLE_ONLY_CPU
#define USE_OP(op_type) USE_OP_CPU(op_type)
Y
Yu Yang 已提交
428
#else
429 430
#define USE_OP(op_type) \
  USE_OP_CPU(op_type);  \
Y
Yu Yang 已提交
431 432
  USE_OP_KERNEL(op_type, GPU)
#endif
433 434 435

}  // namespace framework
}  // namespace paddle