slice_op.cc 17.6 KB
Newer Older
W
whs 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
/* Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

    http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */

#include "paddle/fluid/operators/slice_op.h"
#include <algorithm>
17
#include <memory>
18
#include <string>
W
whs 已提交
19 20 21 22 23 24 25 26 27 28 29
#include <vector>

namespace paddle {
namespace operators {

using Tensor = framework::Tensor;

class SliceOp : public framework::OperatorWithKernel {
 public:
  using framework::OperatorWithKernel::OperatorWithKernel;

30 31
  void InferShape(framework::InferShapeContext *ctx) const override {
    PADDLE_ENFORCE_EQ(ctx->HasInput("Input"), true,
T
Thunderbrook 已提交
32 33
                      platform::errors::InvalidArgument(
                          "Input (Input) of slice op should not be null."));
34 35

    PADDLE_ENFORCE_EQ(ctx->HasOutput("Out"), true,
T
Thunderbrook 已提交
36 37
                      platform::errors::InvalidArgument(
                          "Output (Out) of slice op should not be null."));
38 39 40 41 42 43 44 45 46 47 48 49 50 51
    auto x_var_type = ctx->GetInputsVarType("Input")[0];
    auto axes = ctx->Attrs().Get<std::vector<int>>("axes");
    if (x_var_type == framework::proto::VarType::LOD_TENSOR_ARRAY) {
      PADDLE_ENFORCE_EQ(axes.size(), 1,
                        platform::errors::InvalidArgument(
                            "The size of axes must be 1 when the Input of "
                            "SliceOp is LoDTensorArray, "
                            "but received %d.",
                            axes.size()));
      if (ctx->IsRuntime()) {
        // If the var type of input is LOD_TENSOR_ARRAY,
        // the output shape is determined by SliceKernel:Compute in runtime.
        return;
      } else {
L
liym27 已提交
52 53
        // NOTE(liym27): A better way is needed to get accurate dims of tensor
        // array.
54 55 56 57 58 59
        // The resulted dim of GetInputDim("Input") is the dim of the
        // last item written into TensorArray "Input". Maybe it's a bug to fix.
        ctx->SetOutputDim("Out", ctx->GetInputDim("Input"));
        return;
      }
    }
W
whs 已提交
60
    auto in_dims = ctx->GetInputDim("Input");
61
    PADDLE_ENFORCE_LT(in_dims.size(), 7,
T
Thunderbrook 已提交
62 63
                      platform::errors::InvalidArgument(
                          "The rank of input should be less than 7."));
W
whs 已提交
64
    framework::DDim out_dims(in_dims);
65

W
whs 已提交
66 67
    auto starts = ctx->Attrs().Get<std::vector<int>>("starts");
    auto ends = ctx->Attrs().Get<std::vector<int>>("ends");
68
    auto infer_flags = ctx->Attrs().Get<std::vector<int>>("infer_flags");
H
Hongyu Liu 已提交
69
    auto decrease_axis = ctx->Attrs().Get<std::vector<int>>("decrease_axis");
W
whs 已提交
70

71 72 73 74 75 76 77 78 79 80 81
    auto starts_size = starts.size();
    auto ends_size = ends.size();
    if (infer_flags.empty()) {
      // Initialize infer_flags with 1.
      // To be compatible with other op tests in which infer_flags is not set.
      infer_flags = std::vector<int>(axes.size(), 1);
    }

    if (ctx->HasInputs("StartsTensorList")) {
      auto StartsTensorList = ctx->Inputs("StartsTensorList");
      PADDLE_ENFORCE_GT(StartsTensorList.size(), 0,
T
Thunderbrook 已提交
82 83
                        platform::errors::InvalidArgument(
                            "StartsTensorList size can't be zero"));
84 85 86 87 88
      starts_size = StartsTensorList.size();
    }
    if (ctx->HasInputs("EndsTensorList")) {
      auto EndsTensorList = ctx->Inputs("EndsTensorList");
      PADDLE_ENFORCE_GT(EndsTensorList.size(), 0,
T
Thunderbrook 已提交
89 90
                        platform::errors::InvalidArgument(
                            "EndsTensorList size can't be zero"));
91 92 93 94 95 96
      ends_size = EndsTensorList.size();
    }

    if (ctx->HasInput("StartsTensor") == false) {
      PADDLE_ENFORCE_EQ(
          starts_size, axes.size(),
T
Thunderbrook 已提交
97 98
          platform::errors::InvalidArgument(
              "The size of starts must be equal to the size of axes."));
99 100
    }
    if (ctx->HasInput("EndsTensor") == false) {
T
Thunderbrook 已提交
101 102 103 104
      PADDLE_ENFORCE_EQ(
          ends_size, axes.size(),
          platform::errors::InvalidArgument(
              "The size of ends must be equal to the size of axes."));
105 106
    }

W
whs 已提交
107 108
    int dim_value, start, end;
    for (size_t i = 0; i < axes.size(); ++i) {
109
      PADDLE_ENFORCE_LT(static_cast<int>(axes[i]), in_dims.size(),
T
Thunderbrook 已提交
110 111 112
                        platform::errors::InvalidArgument(
                            "The index of dimension in axes must be less "
                            "than the size of input shape."));
113 114 115 116 117 118 119 120 121 122 123
      if (infer_flags[i] == -1) {
        out_dims[axes[i]] = -1;
      } else {
        // infer out_dim shape
        dim_value = out_dims[axes[i]];
        if (dim_value > 0) {
          start = starts[i] < 0 ? (starts[i] + dim_value) : starts[i];
          end = ends[i] < 0 ? (ends[i] + dim_value) : ends[i];
          start = std::max(start, 0);
          end = std::max(end, 0);
          end = std::min(end, dim_value);
124 125 126 127 128
          PADDLE_ENFORCE_GT(end, start,
                            platform::errors::InvalidArgument(
                                "end should greater than start, but received "
                                "end = %d, start = %d.",
                                ends[i], starts[i]));
129 130
          out_dims[axes[i]] = end - start;
        }
H
Hongyu Liu 已提交
131
      }
W
whs 已提交
132
    }
H
Hongyu Liu 已提交
133 134 135 136
    // generate new shape
    if (decrease_axis.size() > 0) {
      std::vector<int> new_out_shape;
      for (size_t i = 0; i < decrease_axis.size(); ++i) {
137
        if (ctx->IsRuntime() && infer_flags[i] != -1) {
T
Thunderbrook 已提交
138 139 140
          PADDLE_ENFORCE_EQ(
              out_dims[decrease_axis[i]], 1,
              platform::errors::InvalidArgument("decrease dim should be 1"));
H
Hongyu Liu 已提交
141 142 143 144 145 146 147 148 149 150 151 152 153 154 155
        }
        out_dims[decrease_axis[i]] = 0;
      }

      for (int i = 0; i < out_dims.size(); ++i) {
        if (out_dims[i] != 0) {
          new_out_shape.push_back(out_dims[i]);
        }
      }
      if (new_out_shape.size() == 0) {
        new_out_shape.push_back(1);
      }

      out_dims = framework::make_ddim(new_out_shape);
    }
W
whs 已提交
156
    ctx->SetOutputDim("Out", out_dims);
J
jerrywgz 已提交
157 158 159
    if (axes[0] != 0) {
      ctx->ShareLoD("Input", /*->*/ "Out");
    }
W
whs 已提交
160 161 162 163
  }

 protected:
  framework::OpKernelType GetExpectedKernelType(
164
      const framework::ExecutionContext &ctx) const override {
165 166 167 168 169 170 171
    auto *in_var = ctx.InputVar("Input");
    if (in_var->IsType<framework::LoDTensor>()) {
      auto &in_tensor = in_var->Get<framework::LoDTensor>();
      PADDLE_ENFORCE_EQ(
          in_tensor.IsInitialized(), true,
          platform::errors::InvalidArgument(
              "The tensor Input (Input) of Slice op is not initialized."));
172 173 174 175
      // NOTE: cuda pinned tensor need to copy its data to target place
      if (platform::is_cuda_pinned_place(in_tensor.place())) {
        return framework::OpKernelType(in_tensor.type(), ctx.device_context());
      }
176 177
      return framework::OpKernelType(in_tensor.type(), in_tensor.place());
    }
178
    return framework::OpKernelType(
179
        OperatorWithKernel::IndicateVarDataType(ctx, "Input"), ctx.GetPlace());
180 181 182 183 184 185 186 187 188 189 190 191
  }
  framework::OpKernelType GetKernelTypeForVar(
      const std::string &var_name, const Tensor &tensor,
      const framework::OpKernelType &expected_kernel_type) const override {
    if (var_name == "StartsTensor" || var_name == "EndsTensor") {
      return expected_kernel_type;
    }
    if (var_name == "StartsTensorList" || var_name == "EndsTensorList") {
      return expected_kernel_type;
    }
    return framework::OpKernelType(expected_kernel_type.data_type_,
                                   tensor.place(), tensor.layout());
W
whs 已提交
192 193 194
  }
};

195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213
class SliceOpVarTypeInference : public framework::VarTypeInference {
 public:
  void operator()(framework::InferVarTypeContext *ctx) const override {
    auto x_name = "Input";
    auto out_name = "Out";
    auto decrease_axis = ctx->GetAttr("decrease_axis");
    auto not_decrease = boost::get<std::vector<int>>(decrease_axis).size() == 0;
    if (not_decrease) {
      // The default type of out is LoDTensor.
      // However, if no axis is decreased and the type of input is not
      // LoDTensor, the type of out should be the same as input.
      // For example, input is a LoDTensorArray and no axis is decreased, the
      // output should be a LoDTensorArray.
      ctx->SetOutputType(out_name, ctx->GetInputType(x_name));
      ctx->SetOutputDataType(out_name, ctx->GetInputDataType(x_name));
    }
  }
};

W
whs 已提交
214 215 216
class SliceOpMaker : public framework::OpProtoAndCheckerMaker {
 public:
  void Make() override {
217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241
    AddInput("Input", "(Tensor) Tensor of data to extract slices from.");
    AddInput("StartsTensor",
             "(Tensor<int32>, optional) If provided, slice will use this."
             "It has the highest priority of StartsTensor, StartsTensorList "
             "and attr(starts).")
        .AsDispensable();
    AddInput("EndsTensor",
             "(Tensor<int32>, optional) If provided, slice will use this."
             "It has the highest priority of EndsTensor, EndsTensorList and "
             "attr(ends).")
        .AsDispensable();
    AddInput(
        "StartsTensorList",
        "(vector<Tensor<int32>>, optional) If provided, slice will use this."
        "The shape of the tensor in vector MUST BE [1]."
        "It has higher priority compare with attr(starts).")
        .AsDuplicable()
        .AsDispensable();
    AddInput(
        "EndsTensorList",
        "(vector<Tensor<int32>>, optional) If provided, slice will use this."
        "The shape of the tensor in vector MUST BE [1]."
        "It has higher priority compare with attr(ends).")
        .AsDuplicable()
        .AsDispensable();
W
whs 已提交
242 243 244 245 246 247 248
    AddOutput("Out", "Sliced data tensor.");
    AddAttr<std::vector<int>>(
        "axes",
        "(list<int>) Axes that `starts` and `ends` apply to. It's optional."
        "If not present, will be treated as [0, 1, ..., len(`starts`) - 1].");
    AddAttr<std::vector<int>>(
        "starts",
249 250 251 252 253
        "(list<int>) Starting indices of corresponding axis in `axes`")
        .SetDefault({});
    AddAttr<std::vector<int>>(
        "ends", "(list<int>) Ending indices of corresponding axis in `axes`.")
        .SetDefault({});
W
whs 已提交
254
    AddAttr<std::vector<int>>(
255 256
        "infer_flags", "(list<int>) Flags of inferring dims in attributes.")
        .SetDefault({});
H
Hongyu Liu 已提交
257 258
    AddAttr<std::vector<int>>("decrease_axis", "(list<int>) decrease_axis")
        .SetDefault({});
W
whs 已提交
259 260 261 262 263
    AddComment(R"DOC(
Slice Operator.

Produces a slice of the input tensor along multiple axes. Similar to numpy:
https://docs.scipy.org/doc/numpy/reference/arrays.indexing.html
264
Slice uses `axes`, `starts` and `ends` attributes to specify the start and
W
whs 已提交
265
end dimension for each axis in the list of axes, it uses this information
266 267
to slice the input data tensor. If a negative value is passed for any of
the start or end indices, it represents number of elements before the end
W
whs 已提交
268
of that dimension. If the value passed to start or end is larger than
269 270
the n (the number of elements in this dimension), it represents n.
For slicing to the end of a dimension with unknown size, it is recommended
271
to pass in INT_MAX. The size of axes must be equal to starts\' and ends\'.
272 273
Following examples will explain how slice works:

274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291
.. code-block:: text

    Case1:
        Given:
            data = [ [1, 2, 3, 4], [5, 6, 7, 8], ]
            axes = [0, 1]
            starts = [1, 0]
            ends = [2, 3]
        Then:
            result = [ [5, 6, 7], ]

    Case2:
        Given:
            data = [ [1, 2, 3, 4], [5, 6, 7, 8], ]
            starts = [0, 1]
            ends = [-1, 1000]
        Then:
            result = [ [2, 3, 4], ]
W
whs 已提交
292 293 294 295
)DOC");
  }
};

296 297 298 299
class SliceOpGrad : public framework::OperatorWithKernel {
 public:
  using framework::OperatorWithKernel::OperatorWithKernel;

300
  void InferShape(framework::InferShapeContext *ctx) const override {
T
Thunderbrook 已提交
301 302 303
    PADDLE_ENFORCE_EQ(
        ctx->HasInput("Input"), true,
        platform::errors::InvalidArgument("Input should not be null"));
304
    PADDLE_ENFORCE_EQ(ctx->HasInput(framework::GradVarName("Out")), true,
T
Thunderbrook 已提交
305 306
                      platform::errors::InvalidArgument(
                          "Input(Out@GRAD) should not be null"));
307 308 309 310 311 312 313 314
    auto x_var_type = ctx->GetInputsVarType("Input")[0];
    if (x_var_type == framework::proto::VarType::LOD_TENSOR_ARRAY) {
      // If the var type of input is LOD_TENSOR_ARRAY,
      // the output shape is determined by SliceGradKernel:Compute in runtime.
      if (ctx->IsRuntime()) {
        return;
      }
    }
315 316 317 318 319 320
    auto x_dims = ctx->GetInputDim("Input");
    auto x_grad_name = framework::GradVarName("Input");
    if (ctx->HasOutput(x_grad_name)) {
      ctx->SetOutputDim(x_grad_name, x_dims);
    }
  }
321
  framework::OpKernelType GetExpectedKernelType(
322
      const framework::ExecutionContext &ctx) const override {
323 324 325
    return framework::OpKernelType(OperatorWithKernel::IndicateVarDataType(
                                       ctx, framework::GradVarName("Out")),
                                   ctx.device_context());
326 327 328 329 330 331 332 333 334 335 336 337
  }
  framework::OpKernelType GetKernelTypeForVar(
      const std::string &var_name, const Tensor &tensor,
      const framework::OpKernelType &expected_kernel_type) const override {
    if (var_name == "StartsTensor" || var_name == "EndsTensor") {
      return expected_kernel_type;
    }
    if (var_name == "StartsTensorList" || var_name == "EndsTensorList") {
      return expected_kernel_type;
    }
    return framework::OpKernelType(expected_kernel_type.data_type_,
                                   tensor.place(), tensor.layout());
338
  }
339 340
};

341 342 343 344 345 346 347 348 349 350 351 352 353 354 355
class SliceOpGradVarTypeInference : public framework::VarTypeInference {
 public:
  void operator()(framework::InferVarTypeContext *ctx) const override {
    auto x = "Input";
    auto d_out = framework::GradVarName("Out");
    auto out = framework::GradVarName("Input");
    // The types of grad_input and input should always be the same.
    // The default type of out is LoDTensor, but the type of input can be
    // LoDTensor or LoDTensorArray,
    // so set the type of both to be the same.
    ctx->SetOutputType(out, ctx->GetInputType(x));
    ctx->SetOutputDataType(out, ctx->GetInputDataType(d_out));
  }
};

H
hong 已提交
356 357
template <typename T>
class SliceOpGradMaker : public framework::SingleGradOpMaker<T> {
358
 public:
H
hong 已提交
359
  using framework::SingleGradOpMaker<T>::SingleGradOpMaker;
360 361

 protected:
362
  void Apply(GradOpPtr<T> bind) const override {
H
hong 已提交
363
    bind->SetInput("Input", this->Input("Input"));
H
hong 已提交
364 365 366 367 368 369 370 371 372 373 374 375
    if (this->HasInput("StartsTensor")) {
      bind->SetInput("StartsTensor", this->Input("StartsTensor"));
    }
    if (this->HasInput("EndsTensor")) {
      bind->SetInput("EndsTensor", this->Input("EndsTensor"));
    }
    if (this->HasInput("StartsTensorList")) {
      bind->SetInput("StartsTensorList", this->Input("StartsTensorList"));
    }
    if (this->HasInput("EndsTensorList")) {
      bind->SetInput("EndsTensorList", this->Input("EndsTensorList"));
    }
H
hong 已提交
376 377 378
    bind->SetInput(framework::GradVarName("Out"), this->OutputGrad("Out"));
    bind->SetOutput(framework::GradVarName("Input"), this->InputGrad("Input"));
    bind->SetAttrMap(this->Attrs());
379 380 381 382
    bind->SetType("slice_grad");
  }
};

383 384 385 386 387 388
template <typename T>
class SliceDoubleOpGradMaker : public framework::SingleGradOpMaker<T> {
 public:
  using framework::SingleGradOpMaker<T>::SingleGradOpMaker;

 protected:
389
  void Apply(GradOpPtr<T> bind) const override {
390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408
    if (this->HasInput("StartsTensor")) {
      bind->SetInput("StartsTensor", this->Input("StartsTensor"));
    }
    if (this->HasInput("EndsTensor")) {
      bind->SetInput("EndsTensor", this->Input("EndsTensor"));
    }
    if (this->HasInput("StartsTensorList")) {
      bind->SetInput("StartsTensorList", this->Input("StartsTensorList"));
    }
    if (this->HasInput("EndsTensorList")) {
      bind->SetInput("EndsTensorList", this->Input("EndsTensorList"));
    }
    bind->SetInput("Input", this->OutputGrad(framework::GradVarName("Input")));
    bind->SetOutput("Out", this->InputGrad(framework::GradVarName("Out")));
    bind->SetAttrMap(this->Attrs());
    bind->SetType("slice");
  }
};

409
DECLARE_NO_NEED_BUFFER_VARS_INFERER(SliceOpGradNoNeedBufferVarsInferer,
Z
Zeng Jinle 已提交
410
                                    "Input");
411

W
whs 已提交
412 413 414 415 416
}  // namespace operators
}  // namespace paddle

namespace ops = paddle::operators;
REGISTER_OPERATOR(slice, ops::SliceOp, ops::SliceOpMaker,
H
hong 已提交
417
                  ops::SliceOpGradMaker<paddle::framework::OpDesc>,
418 419
                  ops::SliceOpGradMaker<paddle::imperative::OpBase>,
                  ops::SliceOpVarTypeInference);
420
REGISTER_OPERATOR(slice_grad, ops::SliceOpGrad,
421 422
                  ops::SliceDoubleOpGradMaker<paddle::framework::OpDesc>,
                  ops::SliceDoubleOpGradMaker<paddle::imperative::OpBase>,
423
                  ops::SliceOpGradNoNeedBufferVarsInferer,
424
                  ops::SliceOpGradVarTypeInference);
W
whs 已提交
425 426 427 428 429

REGISTER_OP_CPU_KERNEL(
    slice, ops::SliceKernel<paddle::platform::CPUDeviceContext, int>,
    ops::SliceKernel<paddle::platform::CPUDeviceContext, int64_t>,
    ops::SliceKernel<paddle::platform::CPUDeviceContext, float>,
430 431 432 433 434
    ops::SliceKernel<paddle::platform::CPUDeviceContext, double>,
    ops::SliceKernel<paddle::platform::CPUDeviceContext,
                     paddle::platform::complex64>,
    ops::SliceKernel<paddle::platform::CPUDeviceContext,
                     paddle::platform::complex128>);
435 436 437 438 439

REGISTER_OP_CPU_KERNEL(
    slice_grad, ops::SliceGradKernel<paddle::platform::CPUDeviceContext, int>,
    ops::SliceGradKernel<paddle::platform::CPUDeviceContext, int64_t>,
    ops::SliceGradKernel<paddle::platform::CPUDeviceContext, float>,
440 441 442 443 444
    ops::SliceGradKernel<paddle::platform::CPUDeviceContext, double>,
    ops::SliceGradKernel<paddle::platform::CPUDeviceContext,
                         paddle::platform::complex64>,
    ops::SliceGradKernel<paddle::platform::CPUDeviceContext,
                         paddle::platform::complex128>);