fluid_benchmark.py 13.6 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26
# Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

import argparse
import cProfile
import time
import os

import numpy as np

import paddle.fluid as fluid
import paddle.fluid.core as core
import paddle.fluid.profiler as profiler
import paddle.fluid.transpiler.distribute_transpiler as distribute_transpiler

27
from args import *
28 29


X
Xin Pan 已提交
30 31
def append_nccl2_prepare(trainer_id):
    if trainer_id >= 0:
32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57
        # append gen_nccl_id at the end of startup program
        trainer_id = int(os.getenv("PADDLE_TRAINER_ID"))
        port = os.getenv("PADDLE_PSERVER_PORT")
        worker_ips = os.getenv("PADDLE_TRAINER_IPS")
        worker_endpoints = []
        for ip in worker_ips.split(","):
            worker_endpoints.append(':'.join([ip, port]))
        num_trainers = len(worker_endpoints)
        current_endpoint = os.getenv("PADDLE_CURRENT_IP") + ":" + port
        worker_endpoints.remove(current_endpoint)

        nccl_id_var = fluid.default_startup_program().global_block().create_var(
            name="NCCLID",
            persistable=True,
            type=fluid.core.VarDesc.VarType.RAW)
        fluid.default_startup_program().global_block().append_op(
            type="gen_nccl_id",
            inputs={},
            outputs={"NCCLID": nccl_id_var},
            attrs={
                "endpoint": current_endpoint,
                "endpoint_list": worker_endpoints,
                "trainer_id": trainer_id
            })
        return nccl_id_var, num_trainers, trainer_id
    else:
X
Xin Pan 已提交
58 59
        raise Exception("must set positive PADDLE_TRAINER_ID env variables for "
                        "nccl-based dist train.")
60 61


62
def dist_transpile(trainer_id, args):
X
Xin Pan 已提交
63
    if trainer_id < 0:
64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83
        return None, None

    # the port of all pservers, needed by both trainer and pserver
    port = os.getenv("PADDLE_PSERVER_PORT", "6174")
    # comma separated ips of all pservers, needed by trainer and
    # pserver
    pserver_ips = os.getenv("PADDLE_PSERVER_IPS", "")
    eplist = []
    for ip in pserver_ips.split(","):
        eplist.append(':'.join([ip, port]))
    pserver_endpoints = ",".join(eplist)
    # total number of workers/trainers in the job, needed by
    # trainer and pserver
    trainers = int(os.getenv("PADDLE_TRAINERS"))
    # the IP of the local machine, needed by pserver only
    current_endpoint = os.getenv("PADDLE_CURRENT_IP", "") + ":" + port
    # the role, should be either PSERVER or TRAINER
    training_role = os.getenv("PADDLE_TRAINING_ROLE")

    t = distribute_transpiler.DistributeTranspiler()
84 85 86 87 88 89
    t.transpile(
        trainer_id,
        pservers=pserver_endpoints,
        trainers=trainers,
        sync_mode=not args.async_mode,
        slice_var_up=not args.no_split_var)
90 91 92 93 94 95 96 97 98 99
    if training_role == "PSERVER":
        pserver_program = t.get_pserver_program(current_endpoint)
        pserver_startup_program = t.get_startup_program(current_endpoint,
                                                        pserver_program)
        return pserver_program, pserver_startup_program
    elif training_role == "TRAINER":
        train_program = t.get_trainer_program()
        return train_program, fluid.default_startup_program()
    else:
        raise ValueError(
G
gongweibao 已提交
100
            'PADDLE_TRAINING_ROLE environment variable must be either TRAINER or PSERVER'
101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125
        )


def test(exe, inference_program, test_reader, feeder, batch_acc):
    accuracy_evaluator = fluid.metrics.Accuracy()
    for batch_id, data in enumerate(test_reader()):
        acc = exe.run(inference_program,
                      feed=feeder.feed(data),
                      fetch_list=[batch_acc])
        accuracy_evaluator.update(value=np.array(acc), weight=len(data))

    return accuracy_evaluator.eval()


# TODO(wuyi): replace train, train_parallel, test functions with new trainer
# API once it is ready.
def train(avg_loss, infer_prog, optimizer, train_reader, test_reader, batch_acc,
          args, train_prog, startup_prog):
    if os.getenv("PADDLE_TRAINING_ROLE") == "PSERVER":
        place = core.CPUPlace()
        exe = fluid.Executor(place)
        exe.run(startup_prog)
        exe.run(train_prog)
        return

126 127 128 129
    if args.use_fake_data:
        raise Exception(
            "fake data is not supported in single GPU test for now.")

130 131 132
    place = core.CPUPlace() if args.device == 'CPU' else core.CUDAPlace(0)
    exe = fluid.Executor(place)
    exe.run(startup_prog)
Y
yi.wu 已提交
133

134
    # Use inference_transpiler to speedup
Y
yi.wu 已提交
135 136 137 138 139 140
    if not args.use_reader_op:
        feed_var_list = [
            var for var in train_prog.global_block().vars.itervalues()
            if var.is_data
        ]
        feeder = fluid.DataFeeder(feed_var_list, place)
141 142 143 144

    iters, num_samples, start_time = 0, 0, time.time()
    for pass_id in range(args.pass_num):
        train_losses = []
Y
yi.wu 已提交
145 146
        if not args.use_reader_op:
            reader_generator = train_reader()
147 148 149 150 151
        batch_id = 0
        data = None
        while True:
            if not args.use_reader_op:
                data = next(reader_generator, None)
Y
yi.wu 已提交
152 153 154
                if data == None:
                    break
            if iters == args.iterations:
155
                break
156 157 158
            if iters == args.skip_batch_num:
                start_time = time.time()
                num_samples = 0
159

Y
yi.wu 已提交
160
            if args.use_reader_op:
Y
yi.wu 已提交
161 162 163 164
                try:
                    loss = exe.run(train_prog, fetch_list=[avg_loss])
                except fluid.core.EnforceNotMet as ex:
                    break
Y
yi.wu 已提交
165 166 167 168
            else:
                loss = exe.run(train_prog,
                               feed=feeder.feed(data),
                               fetch_list=[avg_loss])
169
            iters += 1
170
            batch_id += 1
Y
yi.wu 已提交
171 172 173
            # FIXME(wuyi): For use_reader_op, if the current
            # pass is not the last, the last batch of this pass
            # is also equal to args.batch_size.
Y
update  
yi.wu 已提交
174
            if args.use_reader_op:
Y
yi.wu 已提交
175
                num_samples += args.batch_size * args.gpus
Y
update  
yi.wu 已提交
176 177
            else:
                num_samples += len(data)
178 179 180
            train_losses.append(loss)
            print("Pass: %d, Iter: %d, Loss: %f\n" %
                  (pass_id, iters, np.mean(train_losses)))
L
Luo Tao 已提交
181
        print_train_time(start_time, time.time(), num_samples)
L
Luo Tao 已提交
182
        print("Pass: %d, Loss: %f" % (pass_id, np.mean(train_losses))),
183
        # evaluation
G
guochaorong 已提交
184
        if not args.no_test and batch_acc and not args.use_reader_op:
185 186 187 188
            if args.use_inference_transpiler:
                t = fluid.InferenceTranspiler()
                t.transpile(infer_prog, place)

189 190 191 192 193 194 195 196 197 198 199 200 201
            pass_test_acc = test(exe, infer_prog, test_reader, feeder,
                                 batch_acc)
            print(", Test Accuracy: %f" % pass_test_acc)
        print("\n")
        # TODO(wuyi): add warmup passes to get better perf data.
        exit(0)


# TODO(wuyi): replace train, train_parallel, test functions with new trainer
# API once it is ready.
def train_parallel(avg_loss, infer_prog, optimizer, train_reader, test_reader,
                   batch_acc, args, train_prog, startup_prog, nccl_id_var,
                   num_trainers, trainer_id):
Y
yi.wu 已提交
202 203 204 205 206 207 208 209
    place = core.CPUPlace() if args.device == 'CPU' else core.CUDAPlace(0)
    if not args.use_reader_op:
        feed_var_list = [
            var for var in train_prog.global_block().vars.itervalues()
            if var.is_data
        ]
        feeder = fluid.DataFeeder(feed_var_list, place)

210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229
    # generate fake:
    if args.use_fake_data:
        for var in feed_var_list:
            v = startup_prog.global_block().clone_variable(var)
            var.persistable = True
            v.persistable = True

            real_shape = list(var.shape)
            real_shape[0] = args.batch_size / args.gpus
            startup_prog.global_block().append_op(
                outputs={"Out": v},
                type="fill_constant",
                attrs={"shape": real_shape,
                       "value": 1.0,
                       "dtype": var.dtype})

    if nccl_id_var and trainer_id == 0:
        #FIXME(wuyi): wait other trainer to start listening
        time.sleep(30)

230 231 232 233 234 235 236 237 238 239 240
    startup_exe = fluid.Executor(place)
    startup_exe.run(startup_prog)
    strategy = fluid.ExecutionStrategy()
    strategy.num_threads = 1
    strategy.allow_op_delay = False
    exe = fluid.ParallelExecutor(
        True,
        avg_loss.name,
        exec_strategy=strategy,
        num_trainers=num_trainers,
        trainer_id=trainer_id)
241

242 243 244 245
    for pass_id in range(args.pass_num):
        num_samples = 0
        iters = 0
        start_time = time.time()
Y
yi.wu 已提交
246 247
        if not args.use_reader_op:
            reader_generator = train_reader()
248 249 250 251 252
        batch_id = 0
        data = None
        while True:
            if not args.use_reader_op:
                data = next(reader_generator, None)
Y
yi.wu 已提交
253 254 255
                if data == None:
                    break
            if iters == args.iterations:
256
                break
X
Xin Pan 已提交
257 258 259 260 261
            if args.profile and pass_id == 0 and batch_id == 5:
                profiler.start_profiler("All")
            elif args.profile and pass_id == 0 and batch_id == 10:
                profiler.stop_profiler("total", "/tmp/profile_%d" % trainer_id)

262 263 264
            if iters == args.skip_batch_num:
                start_time = time.time()
                num_samples = 0
Y
yi.wu 已提交
265
            if args.use_fake_data or args.use_reader_op:
Y
yi.wu 已提交
266 267 268 269
                try:
                    loss, = exe.run([avg_loss.name])
                except fluid.core.EnforceNotMet as ex:
                    break
270 271
            else:
                loss, = exe.run([avg_loss.name], feed=feeder.feed(data))
Y
update  
yi.wu 已提交
272
            if args.use_reader_op:
Y
yi.wu 已提交
273
                num_samples += args.batch_size * args.gpus
Y
update  
yi.wu 已提交
274 275
            else:
                num_samples += len(data)
276 277 278 279
            iters += 1
            if batch_id % 1 == 0:
                print("Pass %d, batch %d, loss %s" %
                      (pass_id, batch_id, np.array(loss)))
280
            batch_id += 1
Y
yi.wu 已提交
281

L
Luo Tao 已提交
282
        print_train_time(start_time, time.time(), num_samples)
G
guochaorong 已提交
283 284 285
        if not args.no_test and batch_acc and not args.use_reader_op:
            # we have not implement record io for test
            # skip test when use args.use_reader_op
286 287 288 289 290 291 292 293
            test_acc = test(startup_exe, infer_prog, test_reader, feeder,
                            batch_acc)
            print("Pass: %d, Test Accuracy: %f\n" % (pass_id, test_acc))


def print_arguments(args):
    vars(args)['use_nvprof'] = (vars(args)['use_nvprof'] and
                                vars(args)['device'] == 'GPU')
L
Luo Tao 已提交
294
    print('----------- Configuration Arguments -----------')
295 296 297 298 299
    for arg, value in sorted(vars(args).iteritems()):
        print('%s: %s' % (arg, value))
    print('------------------------------------------------')


L
Luo Tao 已提交
300 301 302 303 304 305 306
def print_train_time(start_time, end_time, num_samples):
    train_elapsed = end_time - start_time
    examples_per_sec = num_samples / train_elapsed
    print('\nTotal examples: %d, total time: %.5f, %.5f examples/sed\n' %
          (num_samples, train_elapsed, examples_per_sec))


307 308 309 310 311 312 313 314
def print_paddle_envs():
    print('----------- Configuration envs -----------')
    for k in os.environ:
        if "PADDLE_" in k:
            print "ENV %s:%s" % (k, os.environ[k])
    print('------------------------------------------------')


315 316 317
def main():
    args = parse_args()
    print_arguments(args)
318
    print_paddle_envs()
319 320
    if args.no_random:
        fluid.default_startup_program().random_seed = 1
X
Xin Pan 已提交
321 322 323 324

    # the unique trainer id, starting from 0, needed by trainer
    # only
    nccl_id_var, num_trainers, trainer_id = (
Y
yi.wu 已提交
325
        None, 1, int(os.getenv("PADDLE_TRAINER_ID", "0")))
326 327 328 329 330 331 332 333 334 335 336 337 338

    if args.use_cprof:
        pr = cProfile.Profile()
        pr.enable()
    model_def = __import__("models.%s" % args.model, fromlist=["models"])
    train_args = list(model_def.get_model(args))
    train_args.append(args)
    # Run optimizer.minimize(avg_loss)
    train_args[2].minimize(train_args[0])
    if args.memory_optimize:
        fluid.memory_optimize(fluid.default_main_program())

    if args.update_method == "pserver":
339
        train_prog, startup_prog = dist_transpile(trainer_id, args)
340 341 342 343 344 345 346 347 348 349 350 351 352 353 354
        if not train_prog:
            raise Exception(
                "Must configure correct environments to run dist train.")
        train_args.extend([train_prog, startup_prog])
        if args.gpus > 1 and os.getenv("PADDLE_TRAINING_ROLE") == "TRAINER":
            train_args.extend([nccl_id_var, num_trainers, trainer_id])
            train_parallel(*train_args)
        train(*train_args)
        exit(0)

    # for other update methods, use default programs
    train_args.append(fluid.default_main_program())
    train_args.append(fluid.default_startup_program())

    if args.update_method == "nccl2":
X
Xin Pan 已提交
355
        nccl_id_var, num_trainers, trainer_id = append_nccl2_prepare(trainer_id)
356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371
    if args.gpus == 1:
        # NOTE: parallel executor use profiler interanlly
        if args.use_nvprof and args.device == 'GPU':
            with profiler.cuda_profiler("cuda_profiler.txt", 'csv') as nvprof:
                train(*train_args)
        else:
            train(*train_args)
    else:
        if args.device == "CPU":
            raise Exception("Only support GPU perf with parallel exe")
        train_args.extend([nccl_id_var, num_trainers, trainer_id])
        train_parallel(*train_args)


if __name__ == "__main__":
    main()