translated_layer.py 61.3 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

import os
import pickle
17

18 19
import numpy as np

20
import paddle
21 22
from paddle import _legacy_C_ops
from paddle.fluid import backward, core, framework, unique_name
23 24
from paddle.fluid.dygraph import layers
from paddle.fluid.dygraph.base import switch_to_static_graph
25 26
from paddle.fluid.executor import (
    _is_dy2st_enable_standalone_executor,
27
    _is_enable_standalone_executor,
28
)
29 30
from paddle.fluid.framework import OpProtoHolder, _non_static_mode
from paddle.fluid.layers.utils import _hash_with_id
31
from paddle.jit.dy2static.partial_program import (
32
    LazyInitialized,
33
    add_build_strategy_for,
34
)
35 36 37

__all__ = ['TranslatedLayer']

38 39 40
INFER_MODEL_SUFFIX = ".pdmodel"
INFER_PARAMS_SUFFIX = ".pdiparams"
INFER_PARAMS_INFO_SUFFIX = ".pdiparams.info"
41
INFER_PROPERTY_SUFFIX = '.meta'
42

43 44 45
LOADED_VAR_SUFFIX = "load"
PARAMETER_NAME_PREFIX = "param"
BUFFER_NAME_PREFIX = "buffer"
46 47 48 49 50 51 52 53 54


def _load_program_desc(model_file_path):
    # 1. parse program desc
    with open(model_file_path, "rb") as f:
        program_desc_str = f.read()

    program_desc = core.ProgramDesc(program_desc_str)
    if not core._is_program_version_supported(program_desc._version()):
55 56 57
        raise ValueError(
            "Unsupported program version: %d\n" % program_desc._version()
        )
58 59 60 61
    return program_desc


def _is_persistable(var_desc):
62 63 64 65 66 67
    if (
        var_desc.type() == core.VarDesc.VarType.FEED_MINIBATCH
        or var_desc.type() == core.VarDesc.VarType.FETCH_LIST
        or var_desc.type() == core.VarDesc.VarType.READER
        or var_desc.type() == core.VarDesc.VarType.RAW
    ):
68 69 70 71 72 73 74
        return False
    return var_desc.persistable()


def _is_parameter(persistable_var_desc, program_desc):
    # 1. firstly, param should be input of op
    input_ops = []  # op can be repeated
75
    for block_idx in range(program_desc.num_blocks()):
76
        block = program_desc.block(block_idx)
77
        for op_idx in range(block.op_size()):
78 79 80 81 82
            op = block.op(op_idx)
            # NOTE: parameter is the input of a certain op
            if persistable_var_desc.name() in op.input_arg_names():
                input_ops.append(op)
    # 2. secondly, param should not be output of op or be same op's output
83
    for block_idx in range(program_desc.num_blocks()):
84
        block = program_desc.block(block_idx)
85
        for op_idx in range(block.op_size()):
86 87 88 89 90 91 92 93 94 95 96 97
            op = block.op(op_idx)
            if persistable_var_desc.name() in op.output_arg_names():
                # such as batch_norm_op
                if op in input_ops:
                    continue
                else:
                    return False
    return True


def _get_persistable_vars(program_desc):
    persistable_vars = []
98
    for i in range(program_desc.num_blocks()):
99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116
        block = program_desc.block(i)
        persistable_vars.extend(list(filter(_is_persistable, block.all_vars())))
    return persistable_vars


def _get_persistable_var_names(program_desc):
    """
    Get all persistable variable names in ProgramDesc.
    """
    var_names = []
    persistable_vars = _get_persistable_vars(program_desc)
    for var in persistable_vars:
        var_names.append(var.name())
    return var_names


def _get_all_var_names(program_desc):
    all_var_names = set()
117
    for i in range(program_desc.num_blocks()):
118 119 120 121 122 123
        block = program_desc.block(i)
        for var in block.all_vars():
            all_var_names.add(var.name())
    return all_var_names


124
@switch_to_static_graph
125 126 127
def _append_loaded_suffix(name):
    """
    Append loaded suffix to the given variable name
128
    e.g. x ==> x.load_0, x.load_0 ==> x.load_0.load_0
129
    """
130 131 132
    suffix = LOADED_VAR_SUFFIX
    new_name = unique_name.generate_with_ignorable_key('.'.join((name, suffix)))
    return new_name
133 134


135 136 137
@switch_to_static_graph
def _generate_unique_var_name(prefix):
    return unique_name.generate_with_ignorable_key(prefix)
138 139 140


def _append_loaded_suffix_to_var(program_desc):
141
    suffix_varname_dict = dict()
142 143 144 145
    persistable_vars = _get_persistable_vars(program_desc)
    for var_desc in persistable_vars:
        old_name = var_desc.name()
        new_name = _append_loaded_suffix(var_desc.name())
146
        suffix_varname_dict[new_name] = old_name
147
        var_desc.set_name(new_name)
148
        for block_idx in range(program_desc.num_blocks()):
149
            block = program_desc.block(block_idx)
150
            block._rename_var(old_name.encode(), new_name.encode())
151
            for op_idx in range(block.op_size()):
152 153 154
                op = block.op(op_idx)
                op._rename_input(old_name, new_name)
                op._rename_output(old_name, new_name)
155
    return suffix_varname_dict
156 157


158 159 160 161 162 163 164 165 166 167 168 169 170 171
@switch_to_static_graph
def _generate_unique_var_name_sync_with_main_program(prefix):
    return unique_name.generate(prefix)


def _get_loaded_var_new_old(program_desc, all_new_old_dict_all):
    new_old_dict = dict()
    persistable_vars = _get_persistable_vars(program_desc)
    for var_desc in persistable_vars:
        name_new = var_desc.name()
        new_old_dict[name_new] = all_new_old_dict_all[name_new]
    return new_old_dict


W
WeiXin 已提交
172
def _rename_var_program_desc(program_desc, include=None, exclude=None):
173
    """
174 175 176 177 178 179 180 181
    Change the name of the loaded variables.Use 'unique_name.generate' to avoid duplication.
    It is used when loading multiple program during inference.

    e.g. linear_0.tmp_3 ==> linear_0.tmp_1, x ==> x_0. For double grad, x@GRAD ==> x_0@GRAD
    If 'include' is not `None`,variables in include and the corresponding
      double grad variables (if exist) are renamed.
    If 'exclude' is not `None`,variables that are in exclude and the
      corresponding double grad variables (if exist) are not renamed.
W
WeiXin 已提交
182 183 184 185 186

    Args:
        program_desc(ProgramDesc):the variables in it will be modified.
        include(List):list of names of variables.
        exclude(List):list of names of variables.
187 188 189 190 191

    Returns:
        tuple of (dict_rename_var_new_old, dict_rename_var_old_new)
        dict_rename_var_new_old is a dict mapping from new name to old name
        dict_rename_var_old_new is a dict mapping from old name to new name
192 193 194 195
    """
    dict_rename_var_old_new = dict()
    dict_rename_var_new_old = dict()
    old_names = []
196
    # Store all old names
197
    for b_idx in range(program_desc.num_blocks()):
198 199 200
        cur_block = program_desc.block(b_idx)
        for var in cur_block.all_vars():
            old_names.append(var.name())
201 202 203 204

    # Create dict_rename_var_new_old and dict_rename_var_old_new for non double
    # grad variables
    has_double_grad = False
205
    for b_idx in range(program_desc.num_blocks()):
206 207 208
        cur_block = program_desc.block(b_idx)
        for var_idx, var in enumerate(cur_block.all_vars()):
            name_old = var.name()
209 210
            is_double_grad_var = "@GRAD" in name_old
            has_double_grad = has_double_grad or is_double_grad_var
211 212 213 214 215
            should_rename = (
                (include is None or name_old in include)
                and (exclude is None or name_old not in exclude)
                and not is_double_grad_var
            )
W
WeiXin 已提交
216
            if should_rename:
217 218 219 220
                temp_name = name_old.split('_')
                if len(temp_name) > 1 and temp_name[-1].isnumeric():
                    temp_name = "_".join(temp_name[:-1])
                else:
W
WeiXin 已提交
221 222 223
                    temp_name = name_old
                while True:
                    name_new = _generate_unique_var_name_sync_with_main_program(
224 225 226 227 228 229
                        temp_name
                    )
                    if (
                        name_new
                        not in old_names[:var_idx] + old_names[var_idx + 1 :]
                    ):
W
WeiXin 已提交
230 231 232
                        break
            else:
                name_new = name_old
233
            if name_old != name_new:
234
                cur_block._rename_var(name_old.encode(), name_new.encode())
235 236 237 238 239 240 241 242
            if not is_double_grad_var:
                dict_rename_var_old_new[name_old] = name_new
                dict_rename_var_new_old[name_new] = name_old

    # Handle double grad names
    if has_double_grad:
        double_grad_rename_dict = {}
        for name_old in dict_rename_var_old_new:
243
            for b_idx in range(program_desc.num_blocks()):
244 245 246 247 248
                cur_block = program_desc.block(b_idx)
                for var_idx, var in enumerate(cur_block.all_vars()):
                    var_name = var.name()
                    if "@GRAD" in var_name and name_old in var_name:
                        new_var_name = var_name.replace(
249 250
                            name_old, dict_rename_var_old_new[name_old]
                        )
251 252 253
                        double_grad_rename_dict[var_name] = new_var_name
        for var_name in double_grad_rename_dict:
            dict_rename_var_old_new[var_name] = double_grad_rename_dict[
254 255
                var_name
            ]
256
            dict_rename_var_new_old[
257 258
                double_grad_rename_dict[var_name]
            ] = var_name
259 260

    # Rename on program desc
261
    for b_idx in range(program_desc.num_blocks()):
262
        cur_block = program_desc.block(b_idx)
263
        for op_idx in range(cur_block.op_size()):
264 265 266
            op = cur_block.op(op_idx)
            for input_arg_name in op.input_arg_names():
                if input_arg_name in dict_rename_var_old_new:
267 268 269 270
                    if (
                        input_arg_name
                        != dict_rename_var_old_new[input_arg_name]
                    ):
271 272
                        op._rename_input(
                            input_arg_name,
273 274
                            dict_rename_var_old_new[input_arg_name],
                        )
275
                        if cur_block.has_var(input_arg_name.encode()):
276
                            cur_block._rename_var(
277
                                input_arg_name.encode(),
278 279 280 281
                                dict_rename_var_old_new[
                                    input_arg_name
                                ].encode(),
                            )
282 283
            for output_arg_name in op.output_arg_names():
                if output_arg_name in dict_rename_var_old_new:
284 285 286 287
                    if (
                        output_arg_name
                        != dict_rename_var_old_new[output_arg_name]
                    ):
288 289
                        op._rename_output(
                            output_arg_name,
290 291
                            dict_rename_var_old_new[output_arg_name],
                        )
292
                        if cur_block.has_var(output_arg_name.encode()):
293
                            cur_block._rename_var(
294
                                output_arg_name.encode(),
295 296 297 298
                                dict_rename_var_old_new[
                                    output_arg_name
                                ].encode(),
                            )
299 300 301 302
    program_desc.flush()
    return dict_rename_var_new_old, dict_rename_var_old_new


303 304 305 306 307
@switch_to_static_graph
def _build_program_by_desc(program_desc):
    prog = framework.Program()
    prog.desc = program_desc
    prog.blocks = [
308
        framework.Block(prog, i) for i in range(prog.desc.num_blocks())
309 310 311 312 313 314 315
    ]
    prog._sync_with_cpp()
    return prog


def _change_is_test_status(program_desc, is_test):
    # change all `is_test` attributes
316
    for i in range(program_desc.num_blocks()):
317
        block = program_desc.block(i)
318
        for j in range(block.op_size()):
319 320 321 322 323
            op = block.op(j)
            if op.has_attr('is_test'):
                op._set_attr('is_test', is_test)


324
class _ProgramHolder:
325 326 327
    """
    Holds the execution information of a Program.

328 329
    _ProgramHolder is the execution unit of TranslatedLayer,
    if TranslatedLayer contains multiple _ProgramHolder,
330 331 332 333 334 335
    it can execute multiple methods

    _ProgramHolder is an internal concept.
    """

    def __init__(self, program_desc):
336
        super().__init__()
337

338
        # input, output, persistable, double_grads var info
339
        self._input_descs = []
340
        self._output_descs = []
341
        self._double_grad_descs = []
342
        self._persistable_names = []
343 344 345 346

        # execution scope
        self._inner_scope = core.Scope()

347 348
        # append suffix var name dict
        self._suffix_varname_dict = None
349 350 351 352
        # forward program
        self._infer_program_desc = self._preprocess(program_desc)
        # forward + backward program
        self._train_program_desc = self._append_backward_desc(
353 354
            self._infer_program_desc
        )
355

356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374
    # forward:
    @switch_to_static_graph
    def _create_forward_train_program(self):
        whole_program = _build_program_by_desc(self._train_program_desc)
        end_op_index = self._infer_program_desc.block(0).op_size()
        if end_op_index > 0:
            return add_build_strategy_for(whole_program, 0, end_op_index)
        else:
            return whole_program

    @LazyInitialized
    def _forward_program_desc(self):
        return self._create_forward_train_program().desc

    # backward
    @switch_to_static_graph
    def _create_backward_train_program(self):
        whole_program = _build_program_by_desc(self._train_program_desc)
        start_op_index = self._infer_program_desc.block(0).op_size() + 2 * len(
375 376
            self._output_descs
        )
377
        end_op_index = whole_program.desc.block(0).op_size()
378 379 380 381
        if start_op_index < end_op_index:
            return add_build_strategy_for(
                whole_program, start_op_index, end_op_index
            )
382 383 384 385 386 387 388
        else:
            return paddle.static.Program()

    @LazyInitialized
    def _backward_program_desc(self):
        return self._create_backward_train_program().desc

389 390 391 392 393 394 395 396
    @property
    def infer_program(self):
        return self._infer_program_desc

    @property
    def train_program(self):
        return self._train_program_desc

397 398 399 400 401 402 403 404
    @property
    def forward_program(self):
        return self._forward_program_desc

    @property
    def backward_program(self):
        return self._backward_program_desc

405
    @property
406 407
    def input_descs(self):
        return self._input_descs
408 409

    @property
410
    def output_descs(self):
411 412 413 414 415 416
        return self._output_descs

    @property
    def persistable_names(self):
        return self._persistable_names

417 418 419 420
    @property
    def double_grad_descs(self):
        return self._double_grad_descs

421 422 423 424 425
    @property
    def scope(self):
        return self._inner_scope

    def _preprocess(self, program_desc):
W
WeiXin 已提交
426 427
        # rename persistable variables of 'program_desc'
        list_persistable_var = _get_persistable_var_names(program_desc)
428
        rename_new_old_dict, _ = _rename_var_program_desc(
429 430
            program_desc, list_persistable_var
        )
431 432 433 434
        # 1. Prune original program
        # remove feed, fetch and scale-1 op, remove op_callstack attr
        ops_to_remove = []
        root_block = program_desc.block(0)
435
        for i in range(root_block.op_size()):
436 437 438
            op = root_block.op(i)
            if op.type() == 'feed':
                ops_to_remove.append(i)
439
                feed_var_name = op.input('X')[0].encode()
440
                root_block._remove_var(feed_var_name)
441
                self._input_descs.append(
442 443
                    root_block.find_var(op.output('Out')[0].encode())
                )
444
            elif op.type() == 'scale' and op.output('Out')[0].startswith(
445 446
                'save_infer_model/scale_'
            ):
447
                ops_to_remove.append(i)
448
                out_var_name = op.output('Out')[0].encode()
449 450
                root_block._remove_var(out_var_name)
                self._output_descs.append(
451 452
                    root_block.find_var(op.input('X')[0].encode())
                )
453 454
            elif op.type() == 'fetch':
                ops_to_remove.append(i)
455
                fetch_var_name = op.output('Out')[0].encode()
456 457 458 459
                root_block._remove_var(fetch_var_name)
                # NOTE: some old pre-train models have no extra scale_op
                if not op.input('X')[0].startswith('save_infer_model/scale_'):
                    self._output_descs.append(
460 461
                        root_block.find_var(op.input('X')[0].encode())
                    )
462 463 464 465 466 467 468
            else:
                if op.has_attr("op_callstack"):
                    op.remove_attr("op_callstack")

        for op_idx in reversed(ops_to_remove):
            root_block._remove_op(op_idx, op_idx + 1)

469 470 471 472 473 474
        for i in range(program_desc.num_blocks()):
            block_desc = program_desc.block(i)
            for var_desc in block_desc.all_vars():
                if "@GRAD" in var_desc.name():
                    self._double_grad_descs.append(var_desc)

475
        # 2. Input processing, reverse feed vars
476
        self._input_descs.reverse()
477 478 479 480

        # 3. Output processing, add scale for outputs
        tmp_program = _build_program_by_desc(program_desc)
        # NOTE: [why need append scale for outputs]
481 482 483 484 485
        # When dealing with some more complex pre-training models, there
        # will be situations where the pre-training model has multiple
        # fetch outputs. In the scenario of multiple fetch outputs,
        # there is a special case where multiple outputs of the model
        # may be on the same branch. According to the user's subsequent
486
        # use, multiple outputs may be associated with multiple branches.
487 488 489 490
        # These subsequent operations are added in TranslatedLayer is
        # agnostic during initialization, which results in subsequent
        # gradient accumulation operations that are required on the
        # output node in the middle of the branch will not be performed,
491 492 493 494 495
        # resulting in error, details see pull request:
        # [https://github.com/PaddlePaddle/Paddle/pull/24627]
        self._append_scale_to_output(tmp_program)

        # 4. Persistable vars processing
496
        # - append loaded suffix to persistable vars
497
        # NOTE: [why need to append suffix to persistable vars]
498 499 500 501 502 503
        # Dygraph and static graph mode use the same naming mechanism.
        # If users want to load the model fine-tune, it is possible
        # to add the existing Layer in the loaded model to enhance
        # the network. For example, the original saved model has linear,
        # and later after loading, a new linear is added. At this time,
        # there will be a problem of duplicate names, so here is unified
504
        # to add the LOADED suffix to the parameters of the model loaded
505
        self._suffix_varname_dict = _get_loaded_var_new_old(
506 507
            program_desc, rename_new_old_dict
        )
508

509 510 511 512 513 514 515 516 517 518 519 520
        # - get persistable var
        self._persistable_names = _get_persistable_var_names(program_desc)

        return program_desc

    @switch_to_static_graph
    def _append_scale_to_output(self, program):
        # 1. append scale & save var
        scale_output_vars = []
        with framework.program_guard(program):
            for i, out in enumerate(self._output_descs):
                var = program.global_block().var(out.name())
2
201716010711 已提交
521
                var = paddle.scale(
522 523
                    var, 1.0, name="translated_layer/scale_{}".format(i)
                )
524 525 526 527 528 529
                scale_output_vars.append(var)
        # 2. update output names & descs
        for i, var in enumerate(scale_output_vars):
            self._output_descs[i] = var.desc

    @switch_to_static_graph
530
    def _get_train_forward_program(self, infer_program_desc):
531 532 533 534 535 536 537 538
        program_desc_copy = core.ProgramDesc(infer_program_desc)

        # 1. set all `is_test` attributes to False
        _change_is_test_status(program_desc_copy, False)

        # 2. prepare program and related var
        # NOTE: To reuse backward interfaces, build Program firstly.
        # Originally, there is no need to build a program, but need to almost
539
        # rewrite a series of methods for append_backward for program_desc.
540 541
        # Therefore, in order to reuse the method of backward.py, build the program here.
        program = _build_program_by_desc(program_desc_copy)
542 543
        # 3. Add the outputs which is only used for training and not saved in
        # inference program.
544
        for block_idx in range(program.num_blocks):
545 546 547
            block = program.block(block_idx)
            for op in block.ops:
                if op.type == "batch_norm":
548 549 550 551
                    if (
                        "ReserveSpace" not in op.output_names
                        or len(op.output("ReserveSpace")) == 0
                    ):
552 553
                        reserve_space = block.create_var(
                            name=unique_name.generate_with_ignorable_key(
554 555
                                ".".join(["reserve_space", 'tmp'])
                            ),
556 557 558
                            dtype=block.var(op.input("X")[0]).dtype,
                            type=core.VarDesc.VarType.LOD_TENSOR,
                            persistable=False,
559 560
                            stop_gradient=True,
                        )
561
                        op.desc.set_output("ReserveSpace", [reserve_space.name])
562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590
                    continue

                proto = OpProtoHolder.instance().get_op_proto(op.type)
                has_create_intermediate_out = False
                for output_proto in proto.outputs:
                    if output_proto.intermediate:
                        intermediate_name = output_proto.name
                        if intermediate_name not in op.output_names:
                            has_create_intermediate_out = True
                            intermediate_var = block.create_var(
                                name=unique_name.generate_with_ignorable_key(
                                    ".".join(
                                        [
                                            op.type + '_' + intermediate_name,
                                            'tmp',
                                        ]
                                    )
                                ),
                                type=core.VarDesc.VarType.LOD_TENSOR,
                                persistable=False,
                                stop_gradient=True,
                            )
                            op.desc.set_output(
                                intermediate_name, [intermediate_var.name]
                            )
                if has_create_intermediate_out:
                    op.desc.infer_var_type(block.desc)
                    op.desc.infer_shape(block.desc)

591 592 593 594 595
        return program

    @switch_to_static_graph
    def _append_backward_desc(self, infer_program_desc):
        program = self._get_train_forward_program(infer_program_desc)
596

597 598 599 600 601 602 603 604 605 606
        targets = []
        for out in self._output_descs:
            targets.append(program.global_block().var(out.name()))

        # 3. append backward
        backward.gradients(targets=targets, inputs=[])
        return program.desc


# [ TranslatedLayer : Run program in imperative mode ]
607
#
608 609 610 611 612 613 614
# DESIGN IDEA: using an special operator `RunProgram`, execute program inside operator.
#
# Op's Inputs:
#   - the input variable of the user feed
#   - the necessary parameters of the network
# Op's Outputs:
#   - the output variable of fetch
615
#
616 617 618
# This op receives a complete program desc, internally creates scope
# and executor, executes this program. Key points:
#
619
# 1. Data Sharing:
620 621 622 623
#   The varBase of the dynamic graph is not in the scope, so before the op
#   executes the program internally, create persistent variables with the
#   same name as feed, parameters, and fetch in the scope, and share the
#   LoDTensor of the op input.
624
#
625 626 627 628
# 2. Forward and Backward Separation:
#   Because the dynamic graph op performs the forward and backward separately,
#   in the forward op RunProgram, we only execute the forward part of whole program,
#   and in the backward op RunProgramGrad, we execute the backward part of program.
629
#   We can not separate the program into forward and backward part, which will
630 631 632 633 634
#   make some control flow execution logic wrong.


# NOTE: [compatible] deal with model saved by save_inference_model,
# which need get var info from program desc
635 636 637
def _load_persistable_vars_by_program(
    model_path, program_holder, params_filename=None
):
638 639 640 641
    # make sure the path has been checked
    persistable_vars = _get_persistable_vars(program_holder.infer_program)
    load_var_dict = {}
    for each_var in persistable_vars:
642
        orig_each_name = program_holder._suffix_varname_dict[each_var.name()]
643 644
        if _is_parameter(each_var, program_holder.infer_program):
            # create output varbase
J
Jiabin Yang 已提交
645
            if framework._in_eager_without_dygraph_check():
646 647 648 649 650 651 652
                new_var = framework.EagerParamBase(
                    shape=each_var.shape(),
                    dtype=each_var.dtype(),
                    name=each_var.name(),
                    type=each_var.type(),
                    persistable=True,
                )
653
            else:
654 655 656 657 658 659 660
                new_var = framework.ParamBase(
                    shape=each_var.shape(),
                    dtype=each_var.dtype(),
                    name=each_var.name(),
                    type=each_var.type(),
                    persistable=True,
                )
661
        else:
662 663 664 665 666 667 668
            new_var = framework._varbase_creator(
                type=each_var.type(),
                name=each_var.name(),
                shape=each_var.shape(),
                dtype=each_var.dtype(),
                persistable=True,
            )
669 670 671 672 673
        if params_filename is None:
            framework._dygraph_tracer().trace_op(
                type='load',
                inputs={},
                outputs={'Out': new_var},
674 675
                attrs={'file_path': os.path.join(model_path, orig_each_name)},
            )
676 677 678 679 680
        new_var.stop_gradient = False
        load_var_dict[each_var.name()] = new_var

    if params_filename is not None:
        load_var_list = []
681
        dict_name_old_new = {
682
            v: k for k, v in program_holder._suffix_varname_dict.items()
683 684 685
        }
        for name in sorted(dict_name_old_new.keys()):
            load_var_list.append(load_var_dict[dict_name_old_new[name]])
686 687 688 689 690

        framework._dygraph_tracer().trace_op(
            type='load_combine',
            inputs={},
            outputs={'Out': load_var_list},
691 692
            attrs={'file_path': os.path.join(model_path, params_filename)},
        )
693 694 695 696 697 698 699 700

        for each_var in persistable_vars:
            if not _is_parameter(each_var, program_holder.infer_program):
                continue
            param = load_var_dict[each_var.name()]
            param.stop_gradient = False

    # NOTE: [Recovery stop gradient information based on the program]
701
    # After loading the model, the stop_gradient information
702 703 704 705 706 707 708 709 710 711 712 713
    # of the original variable is lost, but if a parameter does not
    # have a corresponding @GRAD variable in the backward program,
    # it can be said that it is also stop_gradient
    all_var_names = _get_all_var_names(program_holder.train_program)
    for var_name in load_var_dict:
        grad_var_name = var_name + core.grad_var_suffix()
        if grad_var_name not in all_var_names:
            load_var_dict[var_name].stop_gradient = True

    return load_var_dict


714 715 716
def _load_persistable_vars(
    model_path, var_info_path, program_holder, params_filename
):
717 718
    # 1. load extra var info
    with open(var_info_path, 'rb') as f:
719
        extra_var_info = pickle.load(f)
720 721 722 723

    # 2. construct var dict
    load_var_dict = dict()
    load_var_list = []
724
    inv_suffix_varname_dict = {
725
        value: key for key, value in program_holder._suffix_varname_dict.items()
726
    }
727 728 729

    # NOTE(chenweihang): we need load persistable vars based the program,
    # because the program may be pruned when `save_inference_model`, some
730
    # var in `extra_var_info` may have been pruned
731 732 733 734 735
    for name in sorted(inv_suffix_varname_dict):
        if name not in extra_var_info:
            raise RuntimeError(
                "The model to be loaded is not complete."
                "The variable `%s` of program cannot be found in loaded model.",
736 737
                name,
            )
738 739
        # get suffix var name, see [why need to append suffix to persistable vars]
        new_name = inv_suffix_varname_dict[name]
740 741 742
        # create output varbase
        if extra_var_info[name].get('trainable', None) is not None:
            # use default shape and dtype
J
Jiabin Yang 已提交
743
            if framework._in_eager_without_dygraph_check():
744 745 746 747 748 749
                new_var = framework.EagerParamBase(
                    shape=[
                        1
                    ],  # only to pass check, this shape is not meaningful
                    dtype=core.VarDesc.VarType.FP32,
                    name=new_name,
750 751
                    persistable=True,
                )
752 753 754 755 756 757 758
            else:
                new_var = framework.ParamBase(
                    shape=[
                        1
                    ],  # only to pass check, this shape is not meaningful
                    dtype=core.VarDesc.VarType.FP32,
                    name=new_name,
759 760
                    persistable=True,
                )
761
        else:
762 763 764
            new_var = framework._varbase_creator(
                name=new_name, persistable=True
            )
765 766 767 768 769 770

        new_var.stop_gradient = extra_var_info[name]['stop_gradient']
        load_var_dict[new_name] = new_var
        load_var_list.append(new_var)

    # 3. load all vars
771 772 773 774 775 776
    assert params_filename is not None, "params_filename should not be None."
    var_file_path = os.path.join(model_path, params_filename)
    if not os.path.exists(var_file_path):
        if len(extra_var_info) != 0:
            raise ValueError("The model to be loaded is incomplete.")
    else:
777 778 779 780 781 782
        framework._dygraph_tracer().trace_op(
            type='load_combine',
            inputs={},
            outputs={'Out': load_var_list},
            attrs={'file_path': var_file_path},
        )
783 784 785 786

    return load_var_dict


787 788 789 790 791 792 793 794 795
# NOTE(chenweihang): to adapt paddle.load to get state_dict
def _remove_varname_suffix(var_dict, program_holder):
    no_suffix_var_dict = dict()
    for var_name in var_dict:
        no_suffix_name = program_holder._suffix_varname_dict[var_name]
        no_suffix_var_dict[no_suffix_name] = var_dict[var_name]
    return no_suffix_var_dict


796 797 798 799 800 801 802 803
def _construct_program_holders(model_path, model_filename=None):
    # make sure the path has been checked
    program_holder_dict = dict()

    if model_filename is not None:
        # [compatible] if assign model_filename, only can load one program as Layer.forward
        model_filename = os.path.basename(model_filename)
        model_file_path = os.path.join(model_path, model_filename)
804 805
        model_name = model_filename[: -len(INFER_MODEL_SUFFIX)]
        # Load every file that meets the requirements in the directory model_path.
806 807 808 809 810
        for filename in os.listdir(model_path):
            if model_filename == filename:
                func_name = 'forward'
                model_file_path = os.path.join(model_path, model_filename)
            elif filename.endswith(INFER_MODEL_SUFFIX) and filename.startswith(
811 812 813 814 815
                model_name
            ):
                parsing_names = filename[
                    len(model_name) : -len(INFER_MODEL_SUFFIX) + 1
                ].split('.')
816 817 818 819 820
                if len(parsing_names) == 3 and len(parsing_names[1]) > 0:
                    func_name = parsing_names[1]
                    model_file_path = os.path.join(model_path, filename)
                else:
                    continue
821 822 823
            else:
                continue
            program_holder_dict[func_name] = _ProgramHolder(
824 825
                _load_program_desc(model_file_path)
            )
826 827 828 829 830 831 832 833 834 835 836
    else:
        for _, _, file_names in os.walk(model_path):
            for name in file_names:
                if 'model' in name:
                    model_file_path = os.path.join(model_path, name)
                    method_name = name.strip('_')
                    if method_name == 'model':
                        method_name = 'forward'
                    else:
                        method_name.replace('model', '')
                    program_holder_dict[method_name] = _ProgramHolder(
837 838
                        _load_program_desc(model_file_path)
                    )
839 840 841 842

    return program_holder_dict


843 844 845
def _construct_params_and_buffers(
    model_path, programs, params_filename=None, append_suffix=True
):
846 847
    var_info_filename = str(params_filename) + ".info"
    var_info_path = os.path.join(model_path, var_info_filename)
848
    params_path = os.path.join(model_path, str(params_filename))
849

850
    if os.path.exists(var_info_path):
851 852 853 854 855
        var_dict = _load_persistable_vars(
            model_path, var_info_path, programs['forward'], params_filename
        )
        model_name = params_filename[: -len(INFER_PARAMS_SUFFIX)]
        # Load every file that meets the requirements in the directory model_path.
856
        for file_name in os.listdir(model_path):
857
            if file_name.startswith(model_name) and file_name.endswith(
858 859 860 861 862
                INFER_PARAMS_SUFFIX
            ):
                parsing_names = file_name[
                    len(model_name) : -len(INFER_PARAMS_SUFFIX) + 1
                ].split('.')
863 864 865 866
                if len(parsing_names) == 3 and len(parsing_names[1]) > 0:
                    func_name = parsing_names[1]
                else:
                    continue
867 868 869 870
            else:
                continue
            var_info_path = os.path.join(model_path, var_info_filename)
            var_dict.update(
871 872 873 874
                _load_persistable_vars(
                    model_path, var_info_path, programs[func_name], file_name
                )
            )
875 876 877
    elif params_filename is not None and not os.path.exists(params_path):
        # When saving XX, there is only '*.pdmodel'
        return dict()
878
    else:
879 880 881
        var_dict = _load_persistable_vars_by_program(
            model_path, programs['forward'], params_filename
        )
882 883 884 885

    if not append_suffix:
        var_dict = _remove_varname_suffix(var_dict, programs['forward'])

886 887 888
    return var_dict


0
0x45f 已提交
889 890 891
def _valid_vars(vars):
    if vars:
        return vars
J
Jiabin Yang 已提交
892
    if framework._in_eager_without_dygraph_check():
0
0x45f 已提交
893
        return [
894 895 896 897 898 899 900
            core.eager.Tensor(
                core.VarDesc.VarType.FP32,
                [],
                "Fake_var",
                core.VarDesc.VarType.RAW,
                False,
            )
0
0x45f 已提交
901 902 903
        ]
    else:
        return [
904 905 906 907 908 909 910
            core.VarBase(
                core.VarDesc.VarType.FP32,
                [],
                "Fake_var",
                core.VarDesc.VarType.RAW,
                False,
            )
0
0x45f 已提交
911 912 913
        ]


W
WeiXin 已提交
914 915 916 917 918
def _run_dygraph(instance, input, program_holder):

    # 1. prepare inputs, outputs, attrs
    input_vars = []
    for i, value in enumerate(input):
919
        if not isinstance(value, (np.ndarray, core.VarBase, core.eager.Tensor)):
W
WeiXin 已提交
920 921
            raise TypeError(
                "The type of input in TranslatedLayer must be numpy array or Variable(VarBase), but received %s."
922 923
                % type(value)
            )
W
WeiXin 已提交
924 925
        # NOTE: In order to unify the API, firstly convert the input to VarBase
        if isinstance(value, np.ndarray):
J
Jiabin Yang 已提交
926
            if framework._in_eager_without_dygraph_check():
927 928 929 930 931
                var = core.eager.Tensor(
                    value=value,
                    name=program_holder.input_descs[i].name(),
                    persistable=False,
                    place=framework._current_expected_place(),
932 933
                    zero_copy=True,
                )
934
            else:
935 936 937 938 939 940 941
                var = core.VarBase(
                    value=value,
                    name=program_holder.input_descs[i].name(),
                    persistable=False,
                    place=framework._current_expected_place(),
                    zero_copy=True,
                )
W
WeiXin 已提交
942 943
        else:
            var = value
944
            # NOTE: we changed var name here,
W
WeiXin 已提交
945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962
            # but it may be an important name set by user
            var.name = program_holder.input_descs[i].name()
        input_vars.append(var)
    if instance._input_args_names is None:
        instance._input_args_names = [
            ins.name() for ins in program_holder.input_descs
        ]

    persistable_vars = []
    for var_name in program_holder.persistable_names:
        dy_var_name = instance._persistable_var_name_dict[var_name]
        if dy_var_name in instance._parameters:
            persistable_vars.append(instance._parameters[dy_var_name])
        elif dy_var_name in instance._buffers:
            persistable_vars.append(instance._buffers[dy_var_name])
        else:
            raise ValueError(
                "The persistable variable %s does not exist in current TranslatedLayer."
963 964
                % var_name
            )
W
WeiXin 已提交
965 966 967

    output_vars = []
    for var_desc in program_holder.output_descs:
J
Jiabin Yang 已提交
968
        if framework._in_eager_without_dygraph_check():
969 970 971 972 973 974 975
            var = core.eager.Tensor(
                dtype=var_desc.dtype(),
                dims=var_desc.shape(),
                name=var_desc.name(),
                type=var_desc.type(),
                persistable=False,
            )
976
        else:
977 978 979 980 981 982 983
            var = core.VarBase(
                var_desc.dtype(),
                var_desc.shape(),
                var_desc.name(),
                var_desc.type(),
                False,
            )
W
WeiXin 已提交
984 985 986
        output_vars.append(var)

    # hold forward variables
J
Jiabin Yang 已提交
987
    if framework._in_eager_without_dygraph_check():
0
0x45f 已提交
988
        tmp_scope_vec = [program_holder.scope]
989
    else:
990 991 992 993 994 995 996
        tmp_scope_vec = core.VarBase(
            core.VarDesc.VarType.FP32,
            [],
            "program_out_scope",
            core.VarDesc.VarType.STEP_SCOPES,
            True,
        )
0
0x45f 已提交
997
        tmp_scope_vec.value().set_scope(program_holder.scope)
W
WeiXin 已提交
998

999 1000
    double_grad_vars = []
    for var_desc in program_holder.double_grad_descs:
J
Jiabin Yang 已提交
1001
        if framework._in_eager_without_dygraph_check():
1002 1003 1004 1005 1006 1007 1008
            var = core.eager.Tensor(
                dtype=var_desc.dtype(),
                dims=var_desc.shape(),
                name=var_desc.name(),
                type=var_desc.type(),
                persistable=False,
            )
1009
        else:
1010 1011 1012 1013 1014 1015 1016
            var = core.VarBase(
                var_desc.dtype(),
                var_desc.shape(),
                var_desc.name(),
                var_desc.type(),
                False,
            )
1017 1018
        double_grad_vars.append(var)

W
WeiXin 已提交
1019
    # 2. run program by op
1020 1021 1022 1023 1024 1025 1026 1027 1028 1029
    trace_program = (
        program_holder.infer_program
        if instance._is_test
        else program_holder.train_program
    )
    forward_program = (
        program_holder._infer_program_desc
        if instance._is_test
        else program_holder.forward_program
    )
W
WeiXin 已提交
1030
    end_op_index = program_holder.infer_program.block(0).op_size()
1031 1032 1033

    attrs = [
        'global_block',
1034 1035 1036 1037 1038 1039 1040 1041 1042
        trace_program.block(0),
        'start_op_index',
        0,
        'end_op_index',
        end_op_index,
        'is_test',
        instance._is_test,
        'program_id',
        _hash_with_id(trace_program, instance),
1043 1044
    ]

1045 1046 1047 1048
    use_interpretorcore = (
        _is_enable_standalone_executor()
        and _is_dy2st_enable_standalone_executor()
    )
1049 1050 1051
    attrs.extend(('use_interpretorcore', use_interpretorcore))
    if use_interpretorcore:
        attrs.extend(
1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068
            (
                'forward_global_block',
                forward_program.block(0),
                'backward_global_block',
                program_holder.backward_program.block(0),
            )
        )

    _legacy_C_ops.run_program(
        _valid_vars(input_vars),
        _valid_vars(persistable_vars),
        _valid_vars(output_vars),
        tmp_scope_vec,
        _valid_vars(double_grad_vars),
        None,
        *attrs
    )
1069

W
WeiXin 已提交
1070 1071 1072 1073 1074 1075 1076 1077
    # NOTE: [ why need set param's gradient type here ]
    # if user set sparse gradient mode, the param's gradient
    # will be SelectedRows, not LoDTensor. But tracer will just
    # set param grad VarBase by forward VarBase(LoDTensor)
    # If we don't change grad_var type here, RunProgramOp need
    # transform SelectedRows to LoDTensor forcibly, it may not
    # be user wanted result.
    for persistable_var in persistable_vars:
0
0x45f 已提交
1078
        grad_var_name = persistable_var.name + core.grad_var_suffix()
1079
        grad_var = trace_program.block(0).find_var(grad_var_name.encode())
1080
        # NOTE: cannot find var desc maybe not problem,
W
WeiXin 已提交
1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096
        # such as in batch_norm
        if grad_var is None:
            continue
        persistable_var._set_grad_type(grad_var.type())

    # 3. prepare output, keep same form with inputs
    outs = output_vars
    if len(output_vars) == 1:
        outs = output_vars[0]
    return outs


def _run_static_graph(input, program_holder, trace_program):
    main_program = framework.default_main_program()
    param_var_names = _get_persistable_var_names(trace_program)
    _, dict_rename_var_old_new = _rename_var_program_desc(
1097 1098
        trace_program, exclude=param_var_names
    )
W
WeiXin 已提交
1099 1100 1101
    trace_program.flush()
    output_names = [var.name() for var in program_holder.output_descs]
    # append blocks from 'trace_program'
1102 1103 1104 1105 1106 1107 1108
    _append_block(
        main_program,
        trace_program,
        program_holder,
        input,
        dict_rename_var_old_new,
    )
W
WeiXin 已提交
1109
    main_program._sync_with_cpp()
1110 1111 1112
    outs = _get_output_from_program(
        main_program, program_holder, dict_rename_var_old_new
    )
W
WeiXin 已提交
1113 1114 1115 1116 1117 1118 1119 1120
    if len(outs) == 1:
        outs = outs[0]
    return outs


def _collect_current_and_parent_var(program, block_idx):
    '''
    Get variables in current block and its parent block.
1121

W
WeiXin 已提交
1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139
    Args:
        program(Program): The program containing the current block.
        block_idx(int): index of current block.

    Returns:
        List: list of variables.
    '''
    vars = []
    if block_idx < 0:
        return vars
    for var in program.block(block_idx).vars:
        vars.append(var)
    parent_idx = program.block(block_idx).parent_idx
    if parent_idx > -1:
        vars += _collect_current_and_parent_var(program, parent_idx)
    return vars


1140 1141 1142 1143 1144 1145 1146
def _append_block(
    dest_program,
    src_program_desc,
    program_holder,
    input_variables,
    dict_rename_var_old_new=None,
):
W
WeiXin 已提交
1147 1148
    '''
    Append Variables and Operators in 'src_program_desc' to dest_program.
1149

W
WeiXin 已提交
1150 1151 1152 1153 1154
    Args:
        dest_program(Program): Variables and Operators are appended to it.
        src_program_desc(ProgramDesc): Variables in it will be appended to 'dest_program'.
        program_holder(_ProgramHolder): program_holder of TranslatedLayer
        input_variables(list): list of input variables
1155
        dict_rename_var_old_new(None|dict): When using '_rename_var_program_desc',
W
WeiXin 已提交
1156 1157 1158 1159
        use it to map the name of the variable before it was modified and the new name.
    '''

    origin_block_idx = dest_program.current_block_idx
1160 1161 1162 1163 1164 1165 1166 1167
    param_var_names = _collect_current_and_parent_var(
        dest_program, origin_block_idx
    )
    append_var_from_block_desc_static(
        dest_program.block(origin_block_idx),
        src_program_desc.block(0),
        exclude=param_var_names,
    )
W
WeiXin 已提交
1168 1169 1170 1171 1172

    name_inp_desc = [inp.name() for inp in program_holder.input_descs]
    input_names = [inp.name for inp in input_variables]
    if len(name_inp_desc) != len(input_names):
        raise ValueError(
1173 1174 1175 1176
            "The number of input is invalid, expected {}, but received {}.".format(
                len(name_inp_desc), len(input_names)
            )
        )
W
WeiXin 已提交
1177 1178 1179 1180 1181 1182
    for i, out_name in enumerate(name_inp_desc):
        if dict_rename_var_old_new:
            out_name = dict_rename_var_old_new[out_name]
        dest_program.block(origin_block_idx).append_op(
            type='assign',
            inputs={'X': [input_names[i]]},
1183 1184
            outputs={'Out': [out_name]},
        )
W
WeiXin 已提交
1185 1186

    append_ops = append_op_from_block_desc_static(
1187 1188
        dest_program.block(origin_block_idx), src_program_desc.block(0)
    )
W
WeiXin 已提交
1189 1190 1191
    dest_program._sync_with_cpp()

    offset_block_idx = dest_program.num_blocks - 1
1192
    parent_idx = 0
W
WeiXin 已提交
1193 1194 1195 1196 1197 1198 1199 1200 1201
    if src_program_desc.num_blocks() > 1:
        for src_block_idx in range(1, src_program_desc.num_blocks()):
            src_block = src_program_desc.block(src_block_idx)
            src_parent_idx = src_block.parent
            if src_parent_idx > 0:
                parent_idx = offset_block_idx + parent_idx
            else:
                parent_idx = origin_block_idx
            dest_block = dest_program._create_block(parent_idx=parent_idx)
1202 1203 1204
            append_var_from_block_desc_static(
                dest_block, src_block, exclude=param_var_names
            )
1205
            append_ops += append_op_from_block_desc_static(
1206 1207
                dest_block, src_block
            )
W
WeiXin 已提交
1208 1209 1210 1211 1212 1213 1214 1215 1216

    dest_program._sync_with_cpp()
    for op in append_ops:
        if op.has_attr('sub_block'):
            sub = op.attr('sub_block')
            if isinstance(sub, framework.core.BlockDesc):
                origin_id = sub.id
            if isinstance(sub, framework.Block):
                origin_id = sub.idx
1217 1218 1219
            op._set_attr(
                'sub_block', dest_program.block(offset_block_idx + origin_id)
            )
W
WeiXin 已提交
1220 1221 1222 1223
    dest_program._sync_with_cpp()
    dest_program.current_block_idx = origin_block_idx


1224 1225 1226
def _get_output_from_program(
    program, program_holder, dict_rename_var_old_new=None
):
W
WeiXin 已提交
1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274
    """
    Get output name of 'program' according to program_holder
    """
    outs = list()
    for var in program_holder.output_descs:
        for idx in range(program.num_blocks):
            vars = program.block(idx).vars
            var_name = var.name()
            if dict_rename_var_old_new:
                var_name = dict_rename_var_old_new[var_name]
            if var_name in vars:
                out = vars[var_name]
                if out not in outs:
                    outs.append(out)
    return outs


def append_op_from_block_desc_static(block, src_block_desc):
    """
    Append Operators of 'src_block_desc' to current block.

    Args:
        block(Block): append OP of  'src_block_desc' to it.
        src_block_desc(BlockDesc): append var of  'src_block_desc'

    Returns:
        List: list of the OP that are append to current block.
    """
    ops = []
    for i in range(src_block_desc.op_size()):
        ops.append(append_op_from_desc_static(block, src_block_desc.op(i)))
    return ops


def append_op_from_desc_static(block, op_desc):
    """
    Append Operators to 'block' according to 'op_desc'.

    Args:
        block(Block): append OP of  'src_block_desc' to it.
        op_desc(OpDesc): create OP according to it.

    Returns:
        Operator: OP appended to 'block'.
    """
    op_type = op_desc.type()
    op_append = block.desc.append_op()
    op_append.copy_from(op_desc)
1275 1276 1277 1278 1279 1280 1281 1282
    op = framework.Operator(
        block=block,
        desc=op_append,
        type=op_type,
        inputs=None,
        outputs=None,
        attrs=None,
    )
W
WeiXin 已提交
1283 1284 1285 1286
    block.ops.append(op)
    return op


1287 1288 1289
def append_var_from_block_desc_static(
    block, src_block_desc, include=None, exclude=None
):
W
WeiXin 已提交
1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307
    """
    Append Variables of 'src_block_desc' to current block.
    If 'include' is not `None`,variables that are not in include are not append.
    If 'exclude' is not `None`,variables that are in exclude will are not append.

    Args:
        block(Block): append Variables of  'src_block_desc' to it.
        src_block_desc(BlockDesc): append var of  'src_block_desc'
        include(List):list of names of variables
        exclude(List):list of names of variables

    Returns:
        List: list of the variables that are append to current block.
    """
    vars_append = []
    for var_desc in src_block_desc.all_vars():
        var_desc_name = var_desc.name()
        should_append = (include is None or var_desc_name in include) and (
1308 1309
            exclude is None or var_desc_name not in exclude
        )
W
WeiXin 已提交
1310 1311 1312
        if not block.has_var(var_desc_name) and should_append:
            var_type = var_desc.type()
            if var_type in [
1313 1314 1315
                core.VarDesc.VarType.SELECTED_ROWS,
                core.VarDesc.VarType.LOD_TENSOR,
                core.VarDesc.VarType.LOD_TENSOR_ARRAY,
W
WeiXin 已提交
1316 1317 1318 1319 1320 1321 1322
            ]:
                data_type = var_desc.dtype()
                var_shape = var_desc.shape()
            else:
                data_type = None
                var_shape = None
            if var_type in [
1323 1324
                core.VarDesc.VarType.LOD_TENSOR,
                core.VarDesc.VarType.LOD_TENSOR_ARRAY,
W
WeiXin 已提交
1325 1326 1327 1328 1329
            ]:
                lod_level = var_desc.lod_level()
            else:
                lod_level = None

1330 1331 1332 1333 1334
            if var_desc.persistable():
                current_block = block.program.global_block()
            else:
                current_block = block

W
WeiXin 已提交
1335
            vars_append.append(
1336
                current_block.create_var(
W
WeiXin 已提交
1337 1338 1339 1340 1341 1342
                    name=var_desc.name(),
                    dtype=data_type,
                    type=var_type,
                    shape=var_shape,
                    lod_level=lod_level,
                    persistable=var_desc.persistable(),
1343 1344 1345
                    set_need_check_feed=var_desc.need_check_feed(),
                )
            )
W
WeiXin 已提交
1346 1347 1348
    return vars_append


1349 1350
class TranslatedLayer(layers.Layer):
    """
1351 1352
    TranslatedLayer is a ``paddle.nn.Layer`` for holding the model
    loaded by :ref:`api_paddle_jit_load` . It can be used like a
1353
    general Layer object in eval or train mode.
1354

1355
    .. note:
1356
        The TranslatedLayer objects should not be created by constructor, it only can be loaded and constructed by :ref:`api_paddle_jit_load` .
1357 1358 1359 1360 1361

    Examples:
        .. code-block:: python

            import numpy as np
1362 1363 1364
            import paddle
            import paddle.nn as nn
            import paddle.optimizer as opt
1365

1366 1367 1368
            BATCH_SIZE = 16
            BATCH_NUM = 4
            EPOCH_NUM = 4
1369

1370 1371 1372 1373 1374 1375 1376
            IMAGE_SIZE = 784
            CLASS_NUM = 10

            # define a random dataset
            class RandomDataset(paddle.io.Dataset):
                def __init__(self, num_samples):
                    self.num_samples = num_samples
1377

1378 1379 1380 1381
                def __getitem__(self, idx):
                    image = np.random.random([IMAGE_SIZE]).astype('float32')
                    label = np.random.randint(0, CLASS_NUM - 1, (1, )).astype('int64')
                    return image, label
1382

1383 1384
                def __len__(self):
                    return self.num_samples
1385

1386 1387
            class LinearNet(nn.Layer):
                def __init__(self):
1388
                    super().__init__()
1389
                    self._linear = nn.Linear(IMAGE_SIZE, CLASS_NUM)
1390

1391
                @paddle.jit.to_static
1392 1393 1394
                def forward(self, x):
                    return self._linear(x)

1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405
            def train(layer, loader, loss_fn, opt):
                for epoch_id in range(EPOCH_NUM):
                    for batch_id, (image, label) in enumerate(loader()):
                        out = layer(image)
                        loss = loss_fn(out, label)
                        loss.backward()
                        opt.step()
                        opt.clear_grad()
                        print("Epoch {} batch {}: loss = {}".format(
                            epoch_id, batch_id, np.mean(loss.numpy())))

1406 1407
            # 1. train & save model.

1408 1409 1410 1411
            # create network
            layer = LinearNet()
            loss_fn = nn.CrossEntropyLoss()
            adam = opt.Adam(learning_rate=0.001, parameters=layer.parameters())
1412

1413 1414 1415 1416 1417 1418 1419
            # create data loader
            dataset = RandomDataset(BATCH_NUM * BATCH_SIZE)
            loader = paddle.io.DataLoader(dataset,
                batch_size=BATCH_SIZE,
                shuffle=True,
                drop_last=True,
                num_workers=2)
1420

1421 1422
            # train
            train(layer, loader, loss_fn, adam)
1423

1424
            # save
1425
            model_path = "linear.example.model"
1426
            paddle.jit.save(layer, model_path)
1427 1428

            # 2. load model as TranslatedLayer
1429 1430 1431 1432

            # load
            translated_layer = paddle.jit.load(model_path)

1433 1434
            # inference
            translated_layer.eval()
1435
            x = paddle.randn([1, IMAGE_SIZE], 'float32')
1436
            pred = translated_layer(x)
1437

1438 1439
            # fine-tune
            translated_layer.train()
1440 1441
            adam = opt.Adam(learning_rate=0.001, parameters=translated_layer.parameters())
            train(translated_layer, loader, loss_fn, adam)
1442 1443 1444 1445

    """

    def __init__(self, programs, persistable_vars):
1446
        super().__init__()
1447 1448 1449 1450 1451 1452 1453

        if not isinstance(programs, dict):
            raise TypeError(
                "TranslatedLayer need to use _ProgramHolder's dict for initialization."
            )
        if not isinstance(persistable_vars, dict):
            raise TypeError(
1454
                "TranslatedLayer need to use persistable variable dict for initialization."
1455 1456 1457 1458
            )

        self._program_holder_dict = programs

1459 1460 1461 1462 1463 1464 1465 1466
        # NOTE(chenweihang): [ why not use var name directly? ]
        # When add parameter or buffer to Layer by follow apis,
        # the variable name can't contain `.`, beccause which may cause
        # AttributeError when access the newly added parameter or buffer
        # in the form of `self.**.**``, but the ParamBase or BarBase
        # name contains `.` originally, such as `linear_0.w_0`, so here
        # need to generate new var name for each var
        self._persistable_var_name_dict = dict()
1467 1468 1469
        # the TranslatedLayer object holded var names count started from 0
        with unique_name.guard():
            for name, var in persistable_vars.items():
1470 1471 1472
                if isinstance(
                    var, (framework.ParamBase, framework.EagerParamBase)
                ):
1473 1474 1475
                    dy_name = _generate_unique_var_name(PARAMETER_NAME_PREFIX)
                    self._persistable_var_name_dict[name] = dy_name
                    self.add_parameter(dy_name, var)
1476
                elif isinstance(var, (core.VarBase, core.eager.Tensor)):
1477 1478 1479 1480 1481 1482 1483
                    dy_name = _generate_unique_var_name(BUFFER_NAME_PREFIX)
                    self._persistable_var_name_dict[name] = dy_name
                    self.register_buffer(dy_name, var)
                else:
                    raise TypeError(
                        "Adding persistent variable which  to layer is not supported now"
                    )
1484 1485

        self._is_test = True
W
WeiXin 已提交
1486
        self._input_args_names = None
1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503

    @staticmethod
    @framework.dygraph_only
    def _construct(model_path, configs=None):
        # 0. dir and filename check
        model_path = os.path.normpath(model_path)
        if not os.path.isdir(model_path):
            raise ValueError("There is no directory named '%s'" % model_path)
        model_filename = None
        params_filename = None
        if configs is not None:
            model_filename = configs.model_filename
            params_filename = configs.params_filename

        # 1. load program desc & construct _ProgramHolder
        programs = _construct_program_holders(model_path, model_filename)

1504
        # 2. load layer parameters & buffers
1505
        persistable_vars = _construct_params_and_buffers(
1506 1507
            model_path, programs, params_filename
        )
1508 1509 1510 1511 1512 1513

        # 3. construct TranslatedLayer object
        translated_layer = TranslatedLayer(programs, persistable_vars)

        # 4. create TranslatedLayer's execution method
        for method_name, program_holder in programs.items():
1514 1515 1516 1517
            if translated_layer._input_args_names is None:
                translated_layer._input_args_names = [
                    ins.name() for ins in program_holder.input_descs
                ]
1518
            setattr(
1519 1520
                TranslatedLayer,
                method_name,
1521
                TranslatedLayer._execution_method_creator(
1522 1523 1524
                    method_name, program_holder
                ),
            )
1525 1526 1527 1528 1529 1530 1531 1532

        # 5. set TranslatedLayer's default mode to eval
        translated_layer.eval()

        return translated_layer

    @staticmethod
    def _execution_method_creator(method_name, program_holder):
W
WeiXin 已提交
1533 1534 1535 1536
        def __i_m_p_l__(self, *input):
            program_holder = self._program_holder_dict[__i_m_p_l__.__name__]
            # When using jit.save, it runs in static graph mode.
            # Run in dynamic graph mode when the model is inferring.
J
Jiabin Yang 已提交
1537
            if _non_static_mode():
W
WeiXin 已提交
1538 1539 1540 1541 1542 1543 1544
                return _run_dygraph(self, input, program_holder)
            else:
                # NOTE(weixin): [ why not use 'program_holder.infer_program' directly? ]
                # When use '_run_static_graph(input, program_holder, program_holder.infer_program)',
                # because '_run_static_graph' modifies 'ProgramDesc', 'OpDesc.op_size()' will return a very large wrong number.
                # A Segmentation fault error may occur if used 'p=ProgramDesc(program_holder.infer_program)'.
                p = framework.Program._construct_from_desc(
1545 1546
                    core.ProgramDesc(program_holder.infer_program)
                )
W
WeiXin 已提交
1547 1548 1549 1550
                return _run_static_graph(input, program_holder, p.desc)

        __i_m_p_l__.__name__ = method_name
        return __i_m_p_l__
1551 1552 1553

    def train(self):
        self._is_test = False
1554
        self.training = True
1555 1556 1557

    def eval(self):
        self._is_test = True
1558
        self.training = False
1559 1560 1561 1562 1563 1564 1565 1566

    def program(self, method_name='forward'):
        """
        Gets translated program of specified method.

        Args:
            - method_name (string): mehtod name corresponding to the program
                to be obtained. Default: 'forward'.
1567

1568 1569 1570 1571 1572
        Returns:
            Program

        Examples:
            .. code-block:: python
1573

1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600
                import numpy as np
                import paddle
                import paddle.nn as nn
                import paddle.optimizer as opt

                BATCH_SIZE = 16
                BATCH_NUM = 4
                EPOCH_NUM = 4

                IMAGE_SIZE = 784
                CLASS_NUM = 10

                # define a random dataset
                class RandomDataset(paddle.io.Dataset):
                    def __init__(self, num_samples):
                        self.num_samples = num_samples

                    def __getitem__(self, idx):
                        image = np.random.random([IMAGE_SIZE]).astype('float32')
                        label = np.random.randint(0, CLASS_NUM - 1, (1, )).astype('int64')
                        return image, label

                    def __len__(self):
                        return self.num_samples

                class LinearNet(nn.Layer):
                    def __init__(self):
1601
                        super().__init__()
1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645
                        self._linear = nn.Linear(IMAGE_SIZE, CLASS_NUM)

                    @paddle.jit.to_static
                    def forward(self, x):
                        return self._linear(x)

                def train(layer, loader, loss_fn, opt):
                    for epoch_id in range(EPOCH_NUM):
                        for batch_id, (image, label) in enumerate(loader()):
                            out = layer(image)
                            loss = loss_fn(out, label)
                            loss.backward()
                            opt.step()
                            opt.clear_grad()
                            print("Epoch {} batch {}: loss = {}".format(
                                epoch_id, batch_id, np.mean(loss.numpy())))

                # create network
                layer = LinearNet()
                loss_fn = nn.CrossEntropyLoss()
                adam = opt.Adam(learning_rate=0.001, parameters=layer.parameters())

                # create data loader
                dataset = RandomDataset(BATCH_NUM * BATCH_SIZE)
                loader = paddle.io.DataLoader(dataset,
                    batch_size=BATCH_SIZE,
                    shuffle=True,
                    drop_last=True,
                    num_workers=2)

                # train
                train(layer, loader, loss_fn, adam)

                # save
                model_path = "linear.example.model"
                paddle.jit.save(layer, model_path)

                # load
                translated_layer = paddle.jit.load(model_path)

                # get program
                program = translated_layer.program()
        """
        # 1. get program holder
1646
        program_holder = self._get_program_holder(method_name)
1647 1648 1649 1650 1651 1652 1653

        # 2. get inference program desc
        program_desc = program_holder.infer_program

        # 3. construct program
        program = _build_program_by_desc(program_desc)
        return program
1654 1655 1656 1657 1658

    def _get_program_holder(self, method_name='forward'):
        program_holder = self._program_holder_dict.get(method_name, None)
        if program_holder is None:
            raise ValueError(
1659 1660 1661
                "The method `%s` does not exist in loaded TranslatedLayer."
                % method_name
            )
1662 1663 1664 1665 1666 1667 1668 1669 1670
        return program_holder

    def _input_spec(self, method_name='forward'):
        # 1. get program holder
        program_holder = self._get_program_holder(method_name)

        # 2. build input spec by input desc
        input_spec = []
        for var_desc in program_holder.input_descs:
1671 1672 1673 1674 1675
            spec = paddle.static.InputSpec(
                shape=var_desc.shape(),
                dtype=var_desc.dtype(),
                name=var_desc.name(),
            )
1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686
            input_spec.append(spec)

        return input_spec

    def _output_spec(self, method_name='forward'):
        # 1. get program holder
        program_holder = self._get_program_holder(method_name)

        # 2. build output spec by output desc
        output_spec = []
        for var_desc in program_holder.output_descs:
1687 1688
            # NOTE(chenweihang): InputSpec describes a tensor, not just input.
            # Maybe the name is not good enough. Here we use InputSpec to
1689
            # construct the description of Output tensor
1690 1691 1692 1693 1694
            spec = paddle.static.InputSpec(
                shape=var_desc.shape(),
                dtype=var_desc.dtype(),
                name=var_desc.name(),
            )
1695 1696 1697
            output_spec.append(spec)

        return output_spec