optimizer.py 35.7 KB
Newer Older
1
#   Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
D
dzhwinter 已提交
2
#
D
dzhwinter 已提交
3 4 5
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
D
dzhwinter 已提交
6
#
D
dzhwinter 已提交
7
#     http://www.apache.org/licenses/LICENSE-2.0
D
dzhwinter 已提交
8
#
D
dzhwinter 已提交
9 10 11 12 13
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
W
wanghaoshuang 已提交
14
import re
15
from collections import defaultdict
16
from paddle.fluid.framework import Program
17
import framework
Q
Qiao Longfei 已提交
18
import layers
F
fengjiayi 已提交
19
from backward import append_backward
Y
Yu Yang 已提交
20 21
from framework import program_guard
import unique_name
22 23 24
from initializer import Constant
from layer_helper import LayerHelper
from regularizer import append_regularization_ops
F
fengjiayi 已提交
25
from clip import append_gradient_clip_ops, error_clip_callback
26
from contextlib import contextmanager
27

28 29
__all__ = [
    'SGD', 'Momentum', 'Adagrad', 'Adam', 'Adamax', 'DecayedAdagrad',
30
    'SGDOptimizer', 'MomentumOptimizer', 'AdagradOptimizer', 'AdamOptimizer',
W
weixing02 已提交
31 32
    'AdamaxOptimizer', 'DecayedAdagradOptimizer', 'RMSPropOptimizer',
    'Adadelta', 'ModelAverage', 'Optimizer'
33
]
Q
Qiao Longfei 已提交
34 35 36 37 38 39


class Optimizer(object):
    """Optimizer Base class.

    Define the common interface of an optimizer.
40 41
    User should not use this class directly,
    but need to use one of it's implementation.
Q
Qiao Longfei 已提交
42 43
    """

Y
Yu Yang 已提交
44
    def __init__(self, learning_rate, regularization=None):
45 46
        if not isinstance(learning_rate, float) and \
                not isinstance(learning_rate, framework.Variable):
Q
qiaolongfei 已提交
47
            raise TypeError("learning rate should be float or Variable")
D
dzhwinter 已提交
48
        self.regularization = regularization
49
        self._learning_rate = learning_rate
D
dzhwinter 已提交
50 51
        # the learning rate type should be inferenced from loss
        self._dtype = None
52 53
        # each program should have a independent learning rate
        # program -> Variable(learning_rate)
Q
qiaolongfei 已提交
54
        self._learning_rate_map = dict()
55 56 57
        if isinstance(self._learning_rate, framework.Variable):
            self._learning_rate_map[framework.default_main_program(
            )] = self._learning_rate
58 59 60 61 62
        # Dictionary of accumulators. Some optimizer subclasses need to
        # allocate and manage extra variables associated with the parameters
        # to train. These variables are called accumulators.
        # {accum_name : { paramter_name : accumulator_for_parameter, ...}, ...}
        self._accumulators = defaultdict(lambda: dict())
Q
Qiao Longfei 已提交
63
        self.helper = None
Q
Qiao Longfei 已提交
64

Q
Qiao Longfei 已提交
65
    def _create_global_learning_rate(self):
66
        lr = self.global_learning_rate()
Q
Qiao Longfei 已提交
67

68 69 70 71
        if isinstance(lr, framework.Variable):
            return
        else:
            if not isinstance(self._learning_rate, float):
Q
qiaolongfei 已提交
72
                raise TypeError(
73 74
                    "learning rate variable is create outside optimizer,"
                    "can not create new learning rate variable for new program")
Q
Qiao Longfei 已提交
75

76 77 78 79 80 81
        # create learning rate in the current main program
        self._learning_rate_map[framework.default_main_program(
        )] = layers.create_global_var(
            name=unique_name.generate("learning_rate"),
            shape=[1],
            value=float(self._learning_rate),
D
dzhwinter 已提交
82
            dtype='float32' if self._dtype == None else self._dtype,
83 84 85
            persistable=True)

    def global_learning_rate(self, program=None):
Q
Qiao Longfei 已提交
86 87 88 89
        """
        get global decayed learning rate
        :return:
        """
90 91
        if program is None:
            program = framework.default_main_program()
Q
qiaolongfei 已提交
92
        return self._learning_rate_map.get(program, None)
Q
Qiao Longfei 已提交
93

Q
Qiao Longfei 已提交
94 95 96 97 98
    def _append_optimize_op(self, block, param_and_grad):
        """ append optimize operator to block and return all the added optimize_op
        """
        raise NotImplementedError()

99 100 101 102
    def _create_param_lr(self, param_and_grad):
        # create learning rate variable for every parameter
        param = param_and_grad[0]
        param_lr = param.optimize_attr['learning_rate']
Q
qiaolongfei 已提交
103 104 105 106
        if param_lr == 1.0:
            return self.global_learning_rate()
        else:
            return self.global_learning_rate() * param_lr
107 108 109 110 111 112 113

    def _create_accumulators(self, block, parameters):
        """Create all accumulators needed by the parameters

        Args:
            block: the block in which the loss variable is present
            parameters: list of parameter variables for the optimizer
Q
Qiao Longfei 已提交
114
        """
115 116
        pass

117 118 119 120 121 122 123 124 125 126 127 128 129
    def _finish_update(self, block):
        """Finish any custom updates needed
           before completing an optimization step

        Args:
            block: the block in which the loss variable is present
            parameters: list of parameter variables for the optimizer

        Returns:
            list of finish ops or None
        """
        pass

130 131 132 133 134 135
    def _add_accumulator(self,
                         name,
                         param,
                         dtype=None,
                         fill_value=0.0,
                         shape=None):
136 137 138 139 140 141 142 143 144 145 146
        """Utility function to add an accumulator for a parameter

        Args:
            block: the block in which the loss variable is present
            name: name of the accumulator
            param: parameter variable for which accumulator is to be added
            dtype: data type of the accumulator variable
            fill_value: value to initialize the accumulator variable
        """
        if (name in self._accumulators and
                param.name in self._accumulators[name]):
147
            raise Exception("Accumulator {} already exists for parameter {}".
148
                            format(name, param.name))
149 150
        if shape == None:
            shape = param.shape
Q
Qiao Longfei 已提交
151 152
        assert isinstance(self.helper, LayerHelper)
        var = self.helper.create_global_variable(
Y
Yu Yang 已提交
153
            name=unique_name.generate(name),
Q
Qiao Longfei 已提交
154
            persistable=True,
F
fengjiayi 已提交
155
            dtype=dtype or param.dtype,
Q
Qiao Longfei 已提交
156
            type=param.type,
157
            shape=shape)
Q
Qiao Longfei 已提交
158
        self.helper.set_variable_initializer(
159
            var, initializer=Constant(value=float(fill_value)))
Q
Qiao Longfei 已提交
160
        self._accumulators[name][param.name] = var
161
        return var
162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178

    def _get_accumulator(self, name, param):
        """Utility function to fetch an accumulator for a parameter

        Args:
            name: name of the accumulator
            param: parameter variable for which accumulator is to be fetched

        Returns:
            accumulator variable for the parameter
        """
        if (name not in self._accumulators or
                param.name not in self._accumulators[name]):
            raise Exception("Accumulator {} does not exist for parameter {}".
                            format(name, param.name))
        return self._accumulators[name][param.name]

Q
Qiao Longfei 已提交
179 180 181
    def create_optimization_pass(self,
                                 parameters_and_grads,
                                 loss,
182
                                 startup_program=None):
Q
Qiao Longfei 已提交
183 184 185 186 187 188 189
        """Add optimization operators to update gradients to variables.

        Args:
          loss: the target that this optimization is for.
          parameters_and_grads: a list of (variable, gradient) pair to update.

        Returns:
190 191 192 193
          return_op_list: a list of operators that will complete one step of
          optimization. This will include parameter update ops, global step
          update ops and any other custom ops required by subclasses to manage
          their internal state.
Q
Qiao Longfei 已提交
194
          :param startup_program:
Q
Qiao Longfei 已提交
195
        """
196 197 198 199 200
        # This is a default implementation of create_optimization_pass that
        # can be shared by most optimizers. This implementation assumes that
        # the subclass will implement the _append_optimize_op method and the
        #  _initialize_tensors method. The subclass can extend the
        # _create_accumulators method if it needs to create accumulators
201
        # for parameters and extend _finish_update method to add custom ops.
202 203

        # Create any accumulators
Q
Qiao Longfei 已提交
204
        program = loss.block.program
D
dzhwinter 已提交
205
        self._dtype = loss.dtype
206
        with program_guard(program, startup_program):
Y
Yancey1989 已提交
207 208
            global_block = framework.default_main_program().global_block()
            start = len(global_block.ops)
209 210 211
            self.helper = LayerHelper(self.__class__.__name__)
            self._create_accumulators(loss.block,
                                      [p[0] for p in parameters_and_grads])
Q
Qiao Longfei 已提交
212
            self._create_global_learning_rate()
213 214 215

            optimize_ops = []
            for param_and_grad in parameters_and_grads:
Y
yuyang18 已提交
216 217 218 219 220 221 222
                with param_and_grad[0].block.program.optimized_guard(
                        param_and_grad[0]):
                    if param_and_grad[0].trainable is True and param_and_grad[
                            1] is not None:
                        optimize_op = self._append_optimize_op(loss.block,
                                                               param_and_grad)
                        optimize_ops.append(optimize_op)
223 224 225

            # Get custom finish ops for subclasses
            # FIXME: Need to fix this once we figure out how to handle dependencies
Y
Yancey1989 已提交
226
            self._finish_update(loss.block)
227

Y
Yancey1989 已提交
228 229
            end = len(global_block.ops)
            return global_block.slice_ops(start, end)
Q
Qiao Longfei 已提交
230

Q
Qiao Longfei 已提交
231 232
    def minimize(self,
                 loss,
233
                 startup_program=None,
Q
Qiao Longfei 已提交
234 235
                 parameter_list=None,
                 no_grad_set=None):
Q
Qiao Longfei 已提交
236 237
        """Add operations to minimize `loss` by updating `parameter_list`.

F
fengjiayi 已提交
238
        This method combines interface `append_backward()` and
Q
Qiao Longfei 已提交
239 240
        `create_optimization_pass()` into one.
        """
F
fengjiayi 已提交
241
        params_grads = append_backward(loss, parameter_list, no_grad_set,
Y
Yang Yang 已提交
242
                                       [error_clip_callback])
Y
Yu Yang 已提交
243

Y
Yu Yang 已提交
244 245
        params_grads = sorted(params_grads, key=lambda x: x[0].name)

Y
Yu Yang 已提交
246 247
        params_grads = append_gradient_clip_ops(params_grads)

F
fengjiayi 已提交
248
        # Add regularization if any
D
dzhwinter 已提交
249 250
        params_grads = append_regularization_ops(params_grads,
                                                 self.regularization)
Y
Yu Yang 已提交
251

Q
Qiao Longfei 已提交
252
        optimize_ops = self.create_optimization_pass(params_grads, loss,
253
                                                     startup_program)
T
typhoonzero 已提交
254
        return optimize_ops, params_grads
Q
Qiao Longfei 已提交
255 256 257 258 259 260


class SGDOptimizer(Optimizer):
    """ Simple SGD optimizer without any state.
    """

D
dzhwinter 已提交
261
    def __init__(self, learning_rate, **kwargs):
Q
Qiao Longfei 已提交
262
        assert learning_rate is not None
Q
Qiao Longfei 已提交
263 264
        super(SGDOptimizer, self).__init__(
            learning_rate=learning_rate, **kwargs)
Q
Qiao Longfei 已提交
265 266
        self.type = "sgd"

267 268
    def _append_optimize_op(self, block, param_and_grad):
        assert isinstance(block, framework.Block)
269

Q
Qiao Longfei 已提交
270 271 272 273 274 275
        # create the optimize op
        sgd_op = block.append_op(
            type=self.type,
            inputs={
                "Param": param_and_grad[0],
                "Grad": param_and_grad[1],
276
                "LearningRate": self._create_param_lr(param_and_grad)
Q
Qiao Longfei 已提交
277
            },
278
            outputs={"ParamOut": param_and_grad[0]})
Q
Qiao Longfei 已提交
279 280

        return sgd_op
281 282 283 284 285 286 287


class MomentumOptimizer(Optimizer):
    """Simple Momentum optimizer with velocity state
    """
    _velocity_acc_str = "velocity"

D
dzhwinter 已提交
288
    def __init__(self, learning_rate, momentum, use_nesterov=False, **kwargs):
289 290
        assert learning_rate is not None
        assert momentum is not None
Q
Qiao Longfei 已提交
291 292
        super(MomentumOptimizer, self).__init__(
            learning_rate=learning_rate, **kwargs)
293 294
        self.type = "momentum"
        self._momentum = momentum
295
        self._use_nesterov = bool(use_nesterov)
296 297 298 299 300

    def _create_accumulators(self, block, parameters):
        assert isinstance(block, framework.Block)

        for p in parameters:
Q
Qiao Longfei 已提交
301
            self._add_accumulator(self._velocity_acc_str, p)
302 303 304 305 306 307 308 309 310 311 312 313 314

    def _append_optimize_op(self, block, param_and_grad):
        assert isinstance(block, framework.Block)

        velocity_acc = self._get_accumulator(self._velocity_acc_str,
                                             param_and_grad[0])
        # create the momentum optimize op
        momentum_op = block.append_op(
            type=self.type,
            inputs={
                "Param": param_and_grad[0],
                "Grad": param_and_grad[1],
                "Velocity": velocity_acc,
315
                "LearningRate": self._create_param_lr(param_and_grad)
316 317 318 319 320
            },
            outputs={
                "ParamOut": param_and_grad[0],
                "VelocityOut": velocity_acc
            },
321
            attrs={"mu": self._momentum,
322
                   "use_nesterov": self._use_nesterov})
323 324

        return momentum_op
325 326 327 328 329 330 331


class AdagradOptimizer(Optimizer):
    """Simple Adagrad optimizer with moment state
    """
    _moment_acc_str = "moment"

D
dzhwinter 已提交
332
    def __init__(self, learning_rate, epsilon=1.0e-6, **kwargs):
333 334
        assert learning_rate is not None
        assert epsilon is not None
Q
Qiao Longfei 已提交
335 336
        super(AdagradOptimizer, self).__init__(
            learning_rate=learning_rate, **kwargs)
337 338 339 340 341 342 343
        self.type = "adagrad"
        self._epsilon = epsilon

    def _create_accumulators(self, block, parameters):
        assert isinstance(block, framework.Block)

        for p in parameters:
Q
Qiao Longfei 已提交
344
            self._add_accumulator(self._moment_acc_str, p)
345 346 347 348 349 350 351

    def _append_optimize_op(self, block, param_and_grad):
        assert isinstance(block, framework.Block)

        moment_acc = self._get_accumulator(self._moment_acc_str,
                                           param_and_grad[0])

352
        # Create the adagrad optimizer op
353 354 355 356 357 358
        adagrad_op = block.append_op(
            type=self.type,
            inputs={
                "Param": param_and_grad[0],
                "Grad": param_and_grad[1],
                "Moment": moment_acc,
359
                "LearningRate": self._create_param_lr(param_and_grad)
360 361 362 363 364 365
            },
            outputs={"ParamOut": param_and_grad[0],
                     "MomentOut": moment_acc},
            attrs={"epsilon": self._epsilon})

        return adagrad_op
366 367 368 369 370 371 372 373 374 375 376 377


class AdamOptimizer(Optimizer):
    """Implements the Adam Optimizer
    """
    _moment1_acc_str = "moment1"
    _moment2_acc_str = "moment2"

    def __init__(self,
                 learning_rate=0.001,
                 beta1=0.9,
                 beta2=0.999,
378
                 epsilon=1e-8,
D
dzhwinter 已提交
379
                 **kwargs):
380 381 382 383
        assert learning_rate is not None
        assert beta1 is not None
        assert beta2 is not None
        assert epsilon is not None
Q
Qiao Longfei 已提交
384 385
        super(AdamOptimizer, self).__init__(
            learning_rate=learning_rate, **kwargs)
386 387 388 389 390 391 392 393
        self.type = "adam"
        self._beta1 = beta1
        self._beta2 = beta2
        self._epsilon = epsilon

    def _create_accumulators(self, block, parameters):
        assert isinstance(block, framework.Block)

Q
Qiao Longfei 已提交
394
        main_block = block.program.global_block()
395 396
        # Create beta1 and beta2 power tensors
        beta_shape = [1]
Q
Qiao Longfei 已提交
397
        self._beta1_pow_acc = self.helper.create_global_variable(
Y
Yu Yang 已提交
398
            name=unique_name.generate('beta1_pow_acc'),
D
dzhwinter 已提交
399
            dtype='float32' if self._dtype == None else self._dtype,
Q
Qiao Longfei 已提交
400 401 402 403
            shape=beta_shape,
            lod_level=0,
            persistable=True)
        self.helper.set_variable_initializer(
404
            self._beta1_pow_acc, initializer=Constant(self._beta1))
Q
Qiao Longfei 已提交
405 406

        self._beta2_pow_acc = self.helper.create_global_variable(
Y
Yu Yang 已提交
407
            name=unique_name.generate('beta2_pow_acc'),
D
dzhwinter 已提交
408
            dtype='float32' if self._dtype == None else self._dtype,
Q
Qiao Longfei 已提交
409 410 411 412 413
            shape=beta_shape,
            lod_level=0,
            persistable=True)

        self.helper.set_variable_initializer(
414
            self._beta2_pow_acc, initializer=Constant(self._beta2))
415 416 417

        # Create accumulator tensors for first and second moments
        for p in parameters:
Q
Qiao Longfei 已提交
418 419
            self._add_accumulator(self._moment1_acc_str, p)
            self._add_accumulator(self._moment2_acc_str, p)
420 421 422 423 424 425 426 427

    def _append_optimize_op(self, block, param_and_grad):
        assert isinstance(block, framework.Block)

        moment1 = self._get_accumulator(self._moment1_acc_str,
                                        param_and_grad[0])
        moment2 = self._get_accumulator(self._moment2_acc_str,
                                        param_and_grad[0])
428
        # create the adam optimize op
429 430 431 432 433
        adam_op = block.append_op(
            type=self.type,
            inputs={
                "Param": param_and_grad[0],
                "Grad": param_and_grad[1],
434
                "LearningRate": self._create_param_lr(param_and_grad),
435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456
                "Moment1": moment1,
                "Moment2": moment2,
                "Beta1Pow": self._beta1_pow_acc,
                "Beta2Pow": self._beta2_pow_acc
            },
            outputs={
                "ParamOut": param_and_grad[0],
                "Moment1Out": moment1,
                "Moment2Out": moment2
            },
            attrs={
                "beta1": self._beta1,
                "beta2": self._beta2,
                "epsilon": self._epsilon
            })

        return adam_op

    def _finish_update(self, block):
        """Update Beta1 and Beta2 Power accumulators
        """
        assert isinstance(block, framework.Block)
Q
Qiao Longfei 已提交
457 458
        main_block = block.program.global_block()
        scale_beta1 = main_block.append_op(
459 460 461 462 463
            type="scale",
            inputs={"X": self._beta1_pow_acc},
            outputs={"Out": self._beta1_pow_acc},
            attrs={"scale": self._beta1})

Q
Qiao Longfei 已提交
464
        scale_beta2 = main_block.append_op(
465 466 467 468 469 470
            type="scale",
            inputs={"X": self._beta2_pow_acc},
            outputs={"Out": self._beta2_pow_acc},
            attrs={"scale": self._beta2})

        return [scale_beta1, scale_beta2]
471 472 473 474 475 476 477 478 479 480 481 482


class AdamaxOptimizer(Optimizer):
    """Implements the Adamax Optimizer
    """
    _moment_acc_str = "moment"
    _inf_norm_acc_str = "inf_norm"

    def __init__(self,
                 learning_rate=0.001,
                 beta1=0.9,
                 beta2=0.999,
483
                 epsilon=1e-8,
D
dzhwinter 已提交
484
                 **kwargs):
485 486 487 488
        assert learning_rate is not None
        assert beta1 is not None
        assert beta2 is not None
        assert epsilon is not None
Q
Qiao Longfei 已提交
489 490
        super(AdamaxOptimizer, self).__init__(
            learning_rate=learning_rate, **kwargs)
491 492 493 494 495 496 497 498
        self.type = "adamax"
        self._beta1 = beta1
        self._beta2 = beta2
        self._epsilon = epsilon

    def _create_accumulators(self, block, parameters):
        # Create beta1 power accumulator tensor
        beta_shape = [1]
Q
Qiao Longfei 已提交
499
        self._beta1_pow_acc = self.helper.create_global_variable(
Y
Yu Yang 已提交
500
            name=unique_name.generate('beta1_pow_acc'),
D
dzhwinter 已提交
501
            dtype='float32' if self._dtype == None else self._dtype,
Q
Qiao Longfei 已提交
502 503 504 505
            shape=beta_shape,
            lod_level=0,
            persistable=True)
        self.helper.set_variable_initializer(
506
            self._beta1_pow_acc, initializer=Constant(self._beta1))
507 508 509

        # Create accumulator tensors for first moment and infinity norm
        for p in parameters:
Q
Qiao Longfei 已提交
510 511
            self._add_accumulator(self._moment_acc_str, p)
            self._add_accumulator(self._inf_norm_acc_str, p)
512 513 514 515 516 517 518 519 520 521 522 523 524

    def _append_optimize_op(self, block, param_and_grad):
        assert isinstance(block, framework.Block)

        moment = self._get_accumulator(self._moment_acc_str, param_and_grad[0])
        inf_norm = self._get_accumulator(self._inf_norm_acc_str,
                                         param_and_grad[0])
        # create the adamax optimize op
        adamax_op = block.append_op(
            type=self.type,
            inputs={
                "Param": param_and_grad[0],
                "Grad": param_and_grad[1],
525
                "LearningRate": self._create_param_lr(param_and_grad),
526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546
                "Moment": moment,
                "InfNorm": inf_norm,
                "Beta1Pow": self._beta1_pow_acc
            },
            outputs={
                "ParamOut": param_and_grad[0],
                "MomentOut": moment,
                "InfNormOut": inf_norm
            },
            attrs={
                "beta1": self._beta1,
                "beta2": self._beta2,
                "epsilon": self._epsilon
            })

        return adamax_op

    def _finish_update(self, block):
        """Update Beta1 Power accumulator
        """
        assert isinstance(block, framework.Block)
Q
Qiao Longfei 已提交
547 548
        main_block = block.program.global_block()
        scale_beta1 = main_block.append_op(
549 550 551 552 553 554
            type="scale",
            inputs={"X": self._beta1_pow_acc},
            outputs={"Out": self._beta1_pow_acc},
            attrs={"scale": self._beta1})

        return [scale_beta1]
555 556 557 558 559 560 561


class DecayedAdagradOptimizer(Optimizer):
    """Simple Decayed Adagrad optimizer with moment state
    """
    _moment_acc_str = "moment"

D
dzhwinter 已提交
562
    def __init__(self, learning_rate, decay=0.95, epsilon=1.0e-6, **kwargs):
563 564 565 566
        assert learning_rate is not None
        assert decay is not None
        assert epsilon is not None

Q
Qiao Longfei 已提交
567 568
        super(DecayedAdagradOptimizer, self).__init__(
            learning_rate=learning_rate, **kwargs)
569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598
        self.type = "decayed_adagrad"
        self._decay = decay
        self._epsilon = epsilon

    def _create_accumulators(self, block, parameters):
        assert isinstance(block, framework.Block)

        for p in parameters:
            self._add_accumulator(self._moment_acc_str, p)

    def _append_optimize_op(self, block, param_and_grad):
        assert isinstance(block, framework.Block)

        moment_acc = self._get_accumulator(self._moment_acc_str,
                                           param_and_grad[0])

        # Create the decayed adagrad optimizer op
        decayed_adagrad_op = block.append_op(
            type=self.type,
            inputs={
                "Param": param_and_grad[0],
                "Grad": param_and_grad[1],
                "Moment": moment_acc,
                "LearningRate": self._create_param_lr(param_and_grad)
            },
            outputs={"ParamOut": param_and_grad[0],
                     "MomentOut": moment_acc},
            attrs={"epsilon": self._epsilon})

        return decayed_adagrad_op
599 600


601
class AdadeltaOptimizer(Optimizer):
602 603 604
    """
    **Adadelta Optimizer**
    Simple Adadelta optimizer with average squared grad state and
605
    average squared update state.
606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627
    The details of adadelta please refer to this
    `ADADELTA: AN ADAPTIVE LEARNING RATE METHOD
    <http://www.matthewzeiler.com/pubs/googleTR2012/googleTR2012.pdf>`_.

    ..  math::

        E(g_t^2) &= \\rho * E(g_{t-1}^2) + (1-\\rho) * g^2 \\\\
        learning\\_rate &= sqrt( ( E(dx_{t-1}^2) + \\epsilon ) / ( \\
                          E(g_t^2) + \\epsilon ) ) \\\\
        E(dx_t^2) &= \\rho * E(dx_{t-1}^2) + (1-\\rho) * (-g*learning\\_rate)^2

    Args:
        learning_rate(float): global leraning rate
        rho(float): rho in equation
        epsilon(float): epsilon in equation

    Examples:
        .. code-block:: python

            optimizer = fluid.optimizer.Adadelta(
                learning_rate=0.0003, epsilon=1.0e-6, rho=0.95)
            _, params_grads = optimizer.minimize(cost)
628
    """
629

630 631 632 633
    _avg_squared_grad_acc_str = "_avg_squared_grad"
    _avg_squared_update_acc_str = "_avg_squared_update"

    def __init__(self, learning_rate, epsilon=1.0e-6, rho=0.95, **kwargs):
634 635 636 637 638 639
        if learning_rate is None:
            raise ValueError("learning_rate is not set.")
        if epsilon is None:
            raise ValueError("epsilon is not set.")
        if rho is None:
            raise ValueError("rho is not set.")
640 641 642 643 644 645 646
        super(AdadeltaOptimizer, self).__init__(
            learning_rate=learning_rate, **kwargs)
        self.type = "adadelta"
        self._epsilon = epsilon
        self._rho = rho

    def _create_accumulators(self, block, parameters):
647 648
        if not isinstance(block, framework.Block):
            raise TypeError("block is not instance of framework.Block.")
649 650 651 652 653 654

        for p in parameters:
            self._add_accumulator(self._avg_squared_grad_acc_str, p)
            self._add_accumulator(self._avg_squared_update_acc_str, p)

    def _append_optimize_op(self, block, param_and_grad):
655 656
        if not isinstance(block, framework.Block):
            raise TypeError("block is not instance of framework.Block.")
657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682

        avg_squared_grad_acc = self._get_accumulator(
            self._avg_squared_grad_acc_str, param_and_grad[0])
        avg_squared_update_acc = self._get_accumulator(
            self._avg_squared_update_acc_str, param_and_grad[0])

        # Create the adadelta optimizer op
        adadelta_op = block.append_op(
            type=self.type,
            inputs={
                "Param": param_and_grad[0],
                "Grad": param_and_grad[1],
                "AvgSquaredGrad": avg_squared_grad_acc,
                "AvgSquaredUpdate": avg_squared_update_acc
            },
            outputs={
                "ParamOut": param_and_grad[0],
                "AvgSquaredGradOut": avg_squared_grad_acc,
                "AvgSquaredUpdateOut": avg_squared_update_acc
            },
            attrs={"epsilon": self._epsilon,
                   "rho": self._rho})

        return adadelta_op


Q
qingqing01 已提交
683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799
class RMSPropOptimizer(Optimizer):
    """
    Root Mean Squared Propagation (RMSProp) is an unpublished, adaptive learning
    rate method. The original slides proposed RMSProp: Slide 29 of
    http://www.cs.toronto.edu/~tijmen/csc321/slides/lecture_slides_lec6.pdf .

    The original equation is as follows:

    ..  math::

        r(w, t) & = \\rho r(w, t-1) + (1 - \\rho)(\\nabla Q_{i}(w))^2 \\\\

        w & = w - \\frac{\\eta} {\\sqrt{r(w,t) + \\epsilon}} \\nabla Q_{i}(w)

    The first equation calculates moving average of the squared gradient for
    each weight. Then dividing the gradient by :math: `sqrt{v(w,t)}`.

    In some cases, adding a momentum term :math: `\\beta` is beneficial.
    In our implementation, Nesterov momentum is used:

    ..  math::

        r(w, t) & = \\rho r(w, t-1) + (1 - \\rho)(\\nabla Q_{i}(w))^2 \\\\

        v(w, t) & = \\beta v(w, t-1) + \\frac{\\eta} {\\sqrt{v(w,t) +
            \\epsilon}} \\nabla Q_{i}(w)

        w & = w - v(w, t)

    where, :math: `\\rho` is a hyperparameter and typical values are 0.9, 0.95
    and so on. :math: `beta` is the momentum term. :math: `\\epsilon` is a
    smoothing term to avoid division by zero, usually set somewhere in range
    from 1e-4 to 1e-8.


    Args:
        learning_rate(float): global leraning rate.
        rho(float): rho is :math: `\\rho` in equation, set 0.95 by default.
        epsilon(float): :math: `\\epsilon` in equation is smoothing term to
            avoid division by zero, set 1e-6 by default.
        momentum(float): :math: `\\beta` in equation is the momentum term,
            set 0.0 by default.

    Raises:
        ValueError: If learning_rate, rho, epsilon, momentum are None.

    Examples:
          .. code-block:: python

              optimizer = fluid.optimizer.RMSProp(0.0001)
              _, params_grads = optimizer.minimize(cost)
    """

    _momentum_acc_str = "momentum"
    _mean_square_acc_str = "mean_square"

    def __init__(self,
                 learning_rate,
                 rho=0.95,
                 epsilon=1.0e-6,
                 momentum=0.0,
                 **kwargs):
        super(RMSPropOptimizer, self).__init__(
            learning_rate=learning_rate, **kwargs)
        if learning_rate is None:
            raise ValueError("learning_rate is not set.")
        if rho is None:
            raise ValueError("rho is not set.")
        if epsilon is None:
            raise ValueError("epsilon is not set.")
        if momentum is None:
            raise ValueError("momentum is not set.")

        self.type = "rmsprop"
        self._rho = rho
        self._epsilon = epsilon
        self._momentum = momentum

    def _create_accumulators(self, block, parameters):
        if not isinstance(block, framework.Block):
            raise TypeError("block is not instance of framework.Block.")

        for p in parameters:
            self._add_accumulator(self._momentum_acc_str, p)
            self._add_accumulator(self._mean_square_acc_str, p)

    def _append_optimize_op(self, block, param_and_grad):
        if not isinstance(block, framework.Block):
            raise TypeError("block is not instance of framework.Block.")

        momentum_acc = self._get_accumulator(self._momentum_acc_str,
                                             param_and_grad[0])
        mean_square_acc = self._get_accumulator(self._mean_square_acc_str,
                                                param_and_grad[0])
        rmsprop_op = block.append_op(
            type=self.type,
            inputs={
                "Param": param_and_grad[0],
                "Grad": param_and_grad[1],
                "Moment": momentum_acc,
                "MeanSquare": mean_square_acc,
                "LearningRate": self._create_param_lr(param_and_grad),
            },
            outputs={
                "ParamOut": param_and_grad[0],
                "MomentOut": momentum_acc,
                "MeanSquareOut": mean_square_acc
            },
            attrs={
                "epsilon": self._epsilon,
                "decay": self._rho,
                "momentum": self._momentum
            })

        return rmsprop_op


800 801 802 803 804 805 806 807 808 809 810 811 812 813
# We short the class name, since users will use the optimizer with the package
# name. The sample code:
#
# import paddle.fluid as fluid
#
# sgd = fluid.optimizer.SGD(...)
#
# It is no need to add an `Optimizer` as the class suffix
SGD = SGDOptimizer
Momentum = MomentumOptimizer
Adagrad = AdagradOptimizer
Adam = AdamOptimizer
Adamax = AdamaxOptimizer
DecayedAdagrad = DecayedAdagradOptimizer
814
Adadelta = AdadeltaOptimizer
Q
qingqing01 已提交
815
RMSProp = RMSPropOptimizer
816 817 818 819 820 821 822 823 824 825 826 827 828


class ModelAverage(Optimizer):
    """Accumulate the average of parameters whtin sliding window. The average
    result will be saved in temporary variables which can be applied to
    parameter variables of current model by calling 'apply()' method. And the
    'restore()' method is used to restored the parameter values of current model.

    The size of average window is determined by average_window_rate,
    min_average_window, max_average_window and current update times.

    Args:
        average_window_rate: The rate of average window.
W
wanghaoshuang 已提交
829
        params_grads: A list of parameter-grad variable pairs.
830 831 832 833 834 835 836 837 838 839 840 841 842
        min_average_window: The minimum size of average window.
        max_average_window: The maximum size of average window.

    Examples:
        ...
        optimizer = fluid.optimizer.Momentum()
        _, params_grads = optimizer.minimize(cost)
        model_average = fluid.optimizer.ModelAverage(params_grads, 0.15,
                                                min_average_window=10000,
                                                max_average_window=20000)
        for pass_id in range(args.pass_num):
            for data in train_reader():
                exe.run(fluid.default_main_program()...)
843 844 845 846

            with model_average.apply(exe):
                for data in test_reader():
                    exe.run(inference_program...)
847 848 849
    """

    def __init__(self,
W
wanghaoshuang 已提交
850
                 average_window_rate,
W
wanghaoshuang 已提交
851
                 params_grads=None,
852 853 854 855 856 857 858
                 min_average_window=10000,
                 max_average_window=10000,
                 **kwargs):
        super(ModelAverage, self).__init__(0.0, **kwargs)
        self.average_window = average_window_rate
        self.min_average_window = min_average_window
        self.max_average_window = max_average_window
859

W
wanghaoshuang 已提交
860 861 862
        self.params_grads = [] if params_grads is None else params_grads
        params = {}
        for param, grad in self.params_grads:
863 864
            if param.do_model_average != False:
                params[param.name] = (param, grad)
865 866
        for param in framework.default_main_program().global_block(
        ).all_parameters():
W
wanghaoshuang 已提交
867
            if param.name not in params and param.do_model_average != False:
868 869 870 871
                grad = param.block.create_var(
                    name=unique_name.generate(".".join([param.name, 'tmp'])),
                    dtype=param.dtype,
                    persistable=False,
W
wanghaoshuang 已提交
872 873 874
                    stop_gradient=True)
                params[param.name] = (param, grad)
        self.params_grads = params.values()
875

876
        for param, grad in self.params_grads:
877
            self._append_average_accumulate_op(param)
878

879 880 881 882
        self.apply_program = Program()
        block = self.apply_program.global_block()
        with program_guard(main_program=self.apply_program):
            for param_grad in self.params_grads:
883
                self._add_average_apply_op(block, param_grad)
884 885 886 887 888

        self.restore_program = Program()
        block = self.restore_program.global_block()
        with program_guard(main_program=self.restore_program):
            for param_grad in self.params_grads:
889
                self._add_average_restore_op(block, param_grad)
890

891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907
    def _add_average_apply_op(self, block, param_grad):
        param = block.clone_variable(param_grad[0])
        grad = block.clone_variable(param_grad[1])
        sum_1 = block.clone_variable(self._get_accumulator('sum_1', param))
        sum_2 = block.clone_variable(self._get_accumulator('sum_2', param))
        sum_3 = block.clone_variable(self._get_accumulator('sum_3', param))
        num_accumulates = block.clone_variable(
            self._get_accumulator('num_accumulates', param))
        old_num_accumulates = block.clone_variable(
            self._get_accumulator('old_num_accumulates', param))
        num_updates = block.clone_variable(
            self._get_accumulator('num_updates', param))
        # backup param value to grad
        layers.assign(input=param, output=grad)
        # param = (sum_1 + sum_2 + sum_3) / (num_accumulates + old_num_accumulates)
        tmp = layers.sum(x=[num_accumulates, old_num_accumulates])
        sum = layers.sum(x=[sum_1, sum_2, sum_3])
D
dzhwinter 已提交
908 909 910 911
        tmp = layers.cast(
            x=tmp, dtype='float32' if self._dtype == None else self._dtype)
        sum = layers.cast(
            x=sum, dtype='float32' if self._dtype == None else self._dtype)
912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955
        layers.elementwise_div(x=sum, y=tmp, out=param)

    def _add_average_restore_op(self, block, param_grad):
        param = block.clone_variable(param_grad[0])
        grad = block.clone_variable(param_grad[1])
        layers.assign(input=grad, output=param)

    def _append_average_accumulate_op(self, param):
        self.helper = LayerHelper("average_accumulate")
        sum_1 = self._add_accumulator('sum_1', param)
        sum_2 = self._add_accumulator('sum_2', param)
        sum_3 = self._add_accumulator('sum_3', param)
        num_accumulates = self._add_accumulator(
            'num_accumulates', param, dtype='int64', shape=[1])
        old_num_accumulates = self._add_accumulator(
            'old_num_accumulates', param, dtype='int64', shape=[1])
        num_updates = self._add_accumulator(
            'num_updates', param, dtype='int64', shape=[1])

        self.helper.append_op(
            type='average_accumulates',
            inputs={
                "param": param,
                "in_sum_1": sum_1,
                "in_sum_2": sum_2,
                "in_sum_3": sum_3,
                "in_num_accumulates": num_accumulates,
                "in_old_num_accumulates": old_num_accumulates,
                "in_num_updates": num_updates
            },
            outputs={
                "out_sum_1": sum_1,
                "out_sum_2": sum_2,
                "out_sum_3": sum_3,
                "out_num_accumulates": num_accumulates,
                "out_old_num_accumulates": old_num_accumulates,
                "out_num_updates": num_updates,
            },
            attrs={
                "average_window": self.average_window,
                "min_average_window": self.min_average_window,
                "max_average_window": self.max_average_window,
            })

956 957
    @contextmanager
    def apply(self, executor, need_restore=True):
958 959
        """Apply average values to parameters of current model.
        """
960 961 962 963 964 965
        executor.run(self.apply_program)
        try:
            yield
        finally:
            if need_restore:
                self.restore(executor)
966 967 968 969

    def restore(self, executor):
        """Restore parameter values of current model.
        """
970
        executor.run(self.restore_program)