vis_demo.cc 5.5 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22
/* Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */

/*
 * This file contains demo for mobilenet, se-resnext50 and ocr.
 */

#include <gflags/gflags.h>
#include <glog/logging.h>  // use glog instead of PADDLE_ENFORCE to avoid importing other paddle header files.
#include <fstream>
#include <iostream>
D
dzhwinter 已提交
23
//#include "paddle/fluid/inference/demo_ci/utils.h"
L
Luo Tao 已提交
24
#include "paddle/fluid/platform/enforce.h"
25 26 27 28 29 30 31

#ifdef PADDLE_WITH_CUDA
DECLARE_double(fraction_of_gpu_memory_to_use);
#endif
DEFINE_string(modeldir, "", "Directory of the inference model.");
DEFINE_string(refer, "", "path to reference result for comparison.");
DEFINE_string(
32
    data, "",
33 34
    "path of data; each line is a record, format is "
    "'<space splitted floats as data>\t<space splitted ints as shape'");
L
Luo Tao 已提交
35 36 37 38
DEFINE_bool(use_gpu, false, "Whether use gpu.");

namespace paddle {
namespace demo {
D
dzhwinter 已提交
39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79
static void split(const std::string& str, char sep,
                  std::vector<std::string>* pieces) {
  pieces->clear();
  if (str.empty()) {
    return;
  }
  size_t pos = 0;
  size_t next = str.find(sep, pos);
  while (next != std::string::npos) {
    pieces->push_back(str.substr(pos, next - pos));
    pos = next + 1;
    next = str.find(sep, pos);
  }
  if (!str.substr(pos).empty()) {
    pieces->push_back(str.substr(pos));
  }
}

/*
 * Get a summary of a PaddleTensor content.
 */
static std::string SummaryTensor(const PaddleTensor& tensor) {
  std::stringstream ss;
  int num_elems = tensor.data.length() / PaddleDtypeSize(tensor.dtype);

  ss << "data[:10]\t";
  switch (tensor.dtype) {
    case PaddleDType::INT64: {
      for (int i = 0; i < std::min(num_elems, 10); i++) {
        ss << static_cast<int64_t*>(tensor.data.data())[i] << " ";
      }
      break;
    }
    case PaddleDType::FLOAT32:
      for (int i = 0; i < std::min(num_elems, 10); i++) {
        ss << static_cast<float*>(tensor.data.data())[i] << " ";
      }
      break;
  }
  return ss.str();
}
80 81 82 83 84 85 86 87 88

struct Record {
  std::vector<float> data;
  std::vector<int32_t> shape;
};

void split(const std::string& str, char sep, std::vector<std::string>* pieces);

Record ProcessALine(const std::string& line) {
L
Luo Tao 已提交
89
  VLOG(3) << "process a line";
90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106
  std::vector<std::string> columns;
  split(line, '\t', &columns);
  CHECK_EQ(columns.size(), 2UL)
      << "data format error, should be <data>\t<shape>";

  Record record;
  std::vector<std::string> data_strs;
  split(columns[0], ' ', &data_strs);
  for (auto& d : data_strs) {
    record.data.push_back(std::stof(d));
  }

  std::vector<std::string> shape_strs;
  split(columns[1], ' ', &shape_strs);
  for (auto& s : shape_strs) {
    record.shape.push_back(std::stoi(s));
  }
L
Luo Tao 已提交
107 108
  VLOG(3) << "data size " << record.data.size();
  VLOG(3) << "data shape size " << record.shape.size();
109 110 111 112 113 114 115 116 117 118 119
  return record;
}

void CheckOutput(const std::string& referfile, const PaddleTensor& output) {
  std::string line;
  std::ifstream file(referfile);
  std::getline(file, line);
  auto refer = ProcessALine(line);
  file.close();

  size_t numel = output.data.length() / PaddleDtypeSize(output.dtype);
L
Luo Tao 已提交
120 121 122
  VLOG(3) << "predictor output numel " << numel;
  VLOG(3) << "reference output numel " << refer.data.size();
  PADDLE_ENFORCE_EQ(numel, refer.data.size());
123 124 125
  switch (output.dtype) {
    case PaddleDType::INT64: {
      for (size_t i = 0; i < numel; ++i) {
L
Luo Tao 已提交
126 127
        PADDLE_ENFORCE_EQ(static_cast<int64_t*>(output.data.data())[i],
                          refer.data[i]);
128 129 130 131 132
      }
      break;
    }
    case PaddleDType::FLOAT32:
      for (size_t i = 0; i < numel; ++i) {
L
Luo Tao 已提交
133 134 135
        PADDLE_ENFORCE_LT(
            fabs(static_cast<float*>(output.data.data())[i] - refer.data[i]),
            1e-5);
136 137 138 139 140 141 142 143 144 145 146 147 148 149
      }
      break;
  }
}

/*
 * Use the native fluid engine to inference the demo.
 */
void Main(bool use_gpu) {
  NativeConfig config;
  config.param_file = FLAGS_modeldir + "/__params__";
  config.prog_file = FLAGS_modeldir + "/__model__";
  config.use_gpu = use_gpu;
  config.device = 0;
L
Luo Tao 已提交
150 151 152
  if (FLAGS_use_gpu) {
    config.fraction_of_gpu_memory = 0.1;  // set by yourself
  }
153

L
Luo Tao 已提交
154
  VLOG(3) << "init predictor";
155 156 157
  auto predictor =
      CreatePaddlePredictor<NativeConfig, PaddleEngineKind::kNative>(config);

L
Luo Tao 已提交
158
  VLOG(3) << "begin to process data";
159 160 161 162 163 164 165 166
  // Just a single batch of data.
  std::string line;
  std::ifstream file(FLAGS_data);
  std::getline(file, line);
  auto record = ProcessALine(line);
  file.close();

  // Inference.
Y
Yan Chunwei 已提交
167 168 169 170 171
  PaddleTensor input;
  input.shape = record.shape;
  input.data =
      PaddleBuf(record.data.data(), record.data.size() * sizeof(float));
  input.dtype = PaddleDType::FLOAT32;
172

L
Luo Tao 已提交
173
  VLOG(3) << "run executor";
174 175 176
  std::vector<PaddleTensor> output;
  predictor->Run({input}, &output);

L
Luo Tao 已提交
177
  VLOG(3) << "output.size " << output.size();
178
  auto& tensor = output.front();
L
Luo Tao 已提交
179
  VLOG(3) << "output: " << SummaryTensor(tensor);
180 181 182 183 184 185 186

  // compare with reference result
  CheckOutput(FLAGS_refer, tensor);
}

}  // namespace demo
}  // namespace paddle
L
Luo Tao 已提交
187 188 189 190 191 192 193 194 195

int main(int argc, char** argv) {
  google::ParseCommandLineFlags(&argc, &argv, true);
  paddle::demo::Main(false /* use_gpu*/);
  if (FLAGS_use_gpu) {
    paddle::demo::Main(true /*use_gpu*/);
  }
  return 0;
}