scale_compute_test.cc 3.7 KB
Newer Older
T
tensor-tang 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56
// Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
//     http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.

#include "paddle/fluid/lite/kernels/arm/scale_compute.h"
#include <gtest/gtest.h>
#include <vector>
#include "paddle/fluid/lite/core/op_registry.h"

namespace paddle {
namespace lite {
namespace kernels {
namespace arm {

template <typename dtype>
void scale_compute_ref(const operators::ScaleParam& param) {
  const dtype* x_data = param.x->mutable_data<const dtype>();
  dtype* output_data = param.output->mutable_data<dtype>();
  DDim x_dims = param.x->dims();
  DDim output_dims = param.output->dims();
  ASSERT_EQ(x_dims.data(), output_dims.data());
  bool bias_after_scale = param.bias_after_scale;
  float scale = param.scale;
  float bias = param.bias;
  if (!bias_after_scale) {
    bias *= scale;
  }
  for (int i = 0; i < output_dims.production(); i++) {
    output_data[i] = x_data[i] * scale + bias;
  }
}

TEST(scale_arm, init) {
  ScaleCompute scale;
  ASSERT_EQ(scale.precision(), PRECISION(kFloat));
  ASSERT_EQ(scale.target(), TARGET(kARM));
}

TEST(scale_arm, compute) {
  ScaleCompute scale;
  operators::ScaleParam param;

  lite::Tensor x;
  lite::Tensor output;
  lite::Tensor output_ref;

T
tensor-tang 已提交
57 58 59 60 61 62 63 64 65
#if 1  // for ci speedup
  for (auto n : {1, 3}) {
    for (auto c : {1, 3}) {
      for (auto h : {3, 4}) {
        for (auto w : {4, 3}) {
          for (auto bias_after_scale : {true, false}) {
            for (auto s : {-1.0f, 0.13f}) {
              for (auto b : {-15.f, 0.11234f}) {
#else
T
tensor-tang 已提交
66 67 68 69 70 71 72
  for (auto n : {1, 3, 4, 11}) {
    for (auto c : {1, 3, 11, 4}) {
      for (auto h : {3, 1, 11, 4}) {
        for (auto w : {1, 3, 4, 12}) {
          for (auto bias_after_scale : {true, false}) {
            for (auto s : {-100.25f, -1.0f, 0.13f, 3840.975f}) {
              for (auto b : {-3075.495f, -15.f, 0.11234f, 128.15f}) {
T
tensor-tang 已提交
73 74
#endif

T
tensor-tang 已提交
75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117
                x.Resize(DDim(std::vector<int64_t>({n, c, h, w})));
                output.Resize(DDim(std::vector<int64_t>({n, c, h, w})));
                output_ref.Resize(DDim(std::vector<int64_t>({n, c, h, w})));
                auto* x_data = x.mutable_data<float>();
                auto* output_data = output.mutable_data<float>();
                auto* output_ref_data = output_ref.mutable_data<float>();
                for (int i = 0; i < x.dims().production(); i++) {
                  x_data[i] = i;
                }
                param.x = &x;
                param.output = &output;
                param.bias_after_scale = bias_after_scale;
                param.scale = s;
                param.bias = b;
                scale.SetParam(param);
                scale.Run();
                param.output = &output_ref;
                scale_compute_ref<float>(param);
                for (int i = 0; i < output.dims().production(); i++) {
                  EXPECT_NEAR(output_data[i], output_ref_data[i], 1e-5);
                }
              }
            }
          }
        }
      }
    }
  }
}

TEST(scale, retrive_op) {
  auto scale =
      KernelRegistry::Global().Create<TARGET(kARM), PRECISION(kFloat)>("scale");
  ASSERT_FALSE(scale.empty());
  ASSERT_TRUE(scale.front());
}

}  // namespace arm
}  // namespace kernels
}  // namespace lite
}  // namespace paddle

USE_LITE_KERNEL(scale, kARM, kFloat, kNCHW, def);