fc_compute.cc 2.8 KB
Newer Older
T
tensor-tang 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24
// Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
//     http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.

#include "paddle/fluid/lite/kernels/arm/fc_compute.h"
#include "paddle/fluid/lite/arm/math/funcs.h"
#include "paddle/fluid/lite/core/op_registry.h"
#include "paddle/fluid/lite/core/type_system.h"

namespace paddle {
namespace lite {
namespace kernels {
namespace arm {

T
tensor-tang 已提交
25 26 27 28
void FcCompute::PrepareForRun() {
  // TODO(TJ): transpose weight
}

T
tensor-tang 已提交
29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59
void FcCompute::Run() {
  auto& param = this->Param<operators::FcParam>();
  auto x_dims = param.input->dims();
  auto w_dims = param.w->dims();

  CHECK_GE(x_dims.size(), 2UL);
  CHECK_EQ(w_dims.size(), 2UL);
  CHECK_EQ(param.output->dims().size(), 2UL);

  const auto* i_data = param.input->data<float>();
  const auto* w_data = param.w->data<float>();
  const auto* b_data = param.bias ? param.bias->data<float>() : nullptr;
  auto* o_data = param.output->mutable_data<float>();

  int x_h = x_dims.Slice(0, param.in_num_col_dims).production();
  int x_w = x_dims.Slice(param.in_num_col_dims, x_dims.size()).production();
  int n = w_dims[1];
  CHECK_EQ(x_w, static_cast<int>(w_dims[0]));
  auto& ctx = this->ctx_->template As<ARMContext>();
  if (x_h > 1) {
    float* packed_in = static_cast<float*>(ctx.workspace_data<float>()) +
                       ctx.l2_cache_size() / sizeof(float);
    lite::arm::math::prepackA(packed_in, i_data, x_w, 0, x_h, 0, x_w, false,
                              &ctx);
    lite::arm::math::sgemm_prepack(packed_in, w_data, b_data, o_data, x_h, n,
                                   x_w, false, false, false, &ctx);
    if (param.bias) {
      CHECK_EQ(param.bias->numel(), n);
      lite::arm::math::fill_bias_fc(o_data, b_data, x_h, n);
    }
  } else {
T
tensor-tang 已提交
60 61
    lite::arm::math::sgemv(w_data, i_data, o_data, false, n, x_w,
                           b_data != nullptr, b_data, false);
T
tensor-tang 已提交
62 63 64 65 66 67 68 69 70 71 72 73 74 75 76
  }
}

}  // namespace arm
}  // namespace kernels
}  // namespace lite
}  // namespace paddle

REGISTER_LITE_KERNEL(fc, kARM, kFloat, kNCHW,
                     paddle::lite::kernels::arm::FcCompute, def)
    .BindInput("Input", {LiteType::GetTensorTy(TARGET(kARM))})
    .BindInput("Bias", {LiteType::GetTensorTy(TARGET(kARM))})
    .BindInput("W", {LiteType::GetTensorTy(TARGET(kARM))})
    .BindOutput("Out", {LiteType::GetTensorTy(TARGET(kARM))})
    .Finalize();