shrink_rnn_memory_op.cc 7.8 KB
Newer Older
1
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserved.
Y
Yang Yu 已提交
2

L
Luo Tao 已提交
3 4 5
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
Y
Yang Yu 已提交
6

L
Luo Tao 已提交
7
    http://www.apache.org/licenses/LICENSE-2.0
Y
Yang Yu 已提交
8

L
Luo Tao 已提交
9 10 11 12 13
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
Y
Yi Wang 已提交
14 15 16 17
#include "paddle/fluid/framework/lod_rank_table.h"
#include "paddle/fluid/framework/lod_tensor.h"
#include "paddle/fluid/operators/array_operator.h"
#include "paddle/fluid/operators/math/math_function.h"
Y
Yang Yu 已提交
18 19 20 21

namespace paddle {
namespace operators {

Y
Yang Yu 已提交
22
class ShrinkRNNMemoryOp : public ArrayOp {
Y
Yang Yu 已提交
23
 public:
Y
Yang Yu 已提交
24 25 26 27
  ShrinkRNNMemoryOp(const std::string &type,
                    const framework::VariableNameMap &inputs,
                    const framework::VariableNameMap &outputs,
                    const framework::AttributeMap &attrs)
Y
Yang Yu 已提交
28 29
      : ArrayOp(type, inputs, outputs, attrs) {}

30 31 32
 private:
  void RunImpl(const framework::Scope &scope,
               const platform::Place &place) const override {
Y
Yang Yu 已提交
33 34 35
    auto *x_var = scope.FindVar(Input("X"));
    PADDLE_ENFORCE(x_var != nullptr, "Input X must be set");
    auto &x_tensor = x_var->Get<framework::LoDTensor>();
D
dzhwinter 已提交
36
    size_t offset = this->GetOffset(scope, place);
Y
Yang Yu 已提交
37 38 39 40
    auto *rank_table_var = scope.FindVar(Input("RankTable"));
    PADDLE_ENFORCE(rank_table_var != nullptr, "RankTable must be set");
    auto &rank_table = rank_table_var->Get<framework::LoDRankTable>();

Y
Yang Yu 已提交
41 42 43 44 45 46
    auto &rank_items = rank_table.items();
    int dst_num_rows =
        std::lower_bound(rank_items.begin(), rank_items.end(), offset,
                         [](const framework::LoDRankTable::TableItem &a,
                            size_t b) { return a.length > b; }) -
        rank_items.begin();
Y
Yang Yu 已提交
47 48

    auto *out_var = scope.FindVar(Output("Out"));
49
    PADDLE_ENFORCE(out_var != nullptr, "Output(Out) must be set.");
Y
Yang Yu 已提交
50
    auto &out_tensor = *out_var->GetMutable<framework::LoDTensor>();
Y
yangyaming 已提交
51 52

    size_t height = dst_num_rows;
Y
yangyaming 已提交
53

54
    // do shrink for the top level LoD
C
chengduo 已提交
55

56 57
    if (x_tensor.lod().size() > 0 &&
        x_tensor.lod()[0].size() > static_cast<size_t>(dst_num_rows)) {
C
chengduo 已提交
58 59 60 61 62 63 64 65 66 67 68 69 70 71
      if (x_tensor.lod().size() > 1) {  // MultiLevel LoD
        auto lod_offset = framework::GetSubLoDAndAbsoluteOffset(
            x_tensor.lod(), 0, dst_num_rows, 0);
        height = lod_offset.second.second;
        auto out_lod = out_tensor.mutable_lod();
        framework::AppendLoD(out_lod, lod_offset.first);
      } else {
        // Shrink LoD
        auto lod_item = x_tensor.lod()[0];
        lod_item.resize(dst_num_rows + 1);
        out_tensor.set_lod({lod_item});
        const auto &const_lod_item = lod_item;
        height = const_lod_item.back();
      }
Y
yangyaming 已提交
72 73
    }

C
chengduo 已提交
74
    if (height != 0) {
D
dzhwinter 已提交
75 76 77 78
      out_tensor.mutable_data(place, x_tensor.type());
      auto dev_ctx = platform::DeviceContextPool::Instance().Get(place);
      framework::TensorCopy(x_tensor.Slice(0, height), place, *dev_ctx,
                            &out_tensor);
Y
Yang Yu 已提交
79 80 81 82
    }
  }
};

Y
Yang Yu 已提交
83
class ShrinkRNNMemoryOpProtoMaker : public framework::OpProtoAndCheckerMaker {
Y
Yang Yu 已提交
84
 public:
Y
Yu Yang 已提交
85
  void Make() override {
86 87 88 89 90 91
    AddInput("X", "(LoDTensor) The RNN step memory to be shrinked.");
    AddInput("RankTable", "(LoDRankTable) The lod_rank_table of dynamic RNN.");
    AddInput("I",
             "(LoDTensor) The step index. The RNN step memory 'X' will be "
             "shrinked to match the size of the input of the index'th step.");
    AddOutput("Out", "(LoDTensor) The shrinked RNN step memory.");
92 93 94 95 96 97 98 99 100 101 102
    AddComment(R"DOC(
This operator is used to shrink output batch of memory defined in dynamic RNN.

Dynamic RNN is able to handle variable-length sequences, in which, sequences in
a mini-batch are sorted by their lengths first. After that, the longest sequence
becomes the first one in the sorted batch, followed by the second longest, the
third longest, and so on. Dynamic RNN then slices a batch input timestep by
timestep from the sorted input. Once any sequence in the input batch reaches its
end, memory defined in dynamicRNN has to shrink its outputs to adapt to the input
batch size for the next time step.
)DOC");
Y
Yang Yu 已提交
103 104 105
  }
};

Y
Yang Yu 已提交
106
class ShrinkRNNMemoryInferShape : public framework::InferShapeBase {
Y
Yang Yu 已提交
107 108 109 110 111 112 113 114 115
 public:
  void operator()(framework::InferShapeContext *context) const override {
    PADDLE_ENFORCE(context->HasInput("X"));
    PADDLE_ENFORCE(context->HasInput("I"));
    PADDLE_ENFORCE(context->HasInput("RankTable"));
    context->SetOutputDim("Out", context->GetInputDim("X"));
  }
};

Y
Yang Yu 已提交
116
class ShrinkRNNMemoryGradOp : public ArrayOp {
Y
Yang Yu 已提交
117
 public:
Y
Yang Yu 已提交
118 119 120 121
  ShrinkRNNMemoryGradOp(const std::string &type,
                        const framework::VariableNameMap &inputs,
                        const framework::VariableNameMap &outputs,
                        const framework::AttributeMap &attrs)
Y
Yang Yu 已提交
122 123
      : ArrayOp(type, inputs, outputs, attrs) {}

124 125 126
 private:
  void RunImpl(const framework::Scope &scope,
               const platform::Place &place) const override {
Y
Yang Yu 已提交
127
    auto *dout_var = scope.FindVar(Input(framework::GradVarName("Out")));
Y
Yang Yu 已提交
128
    auto *dx_var = scope.FindVar(Output(framework::GradVarName("X")));
Y
Yang Yu 已提交
129 130 131 132 133 134 135 136 137
    PADDLE_ENFORCE(dx_var != nullptr, "Input Gradient should not be nullptr");
    auto *x_var = scope.FindVar(Input("X"));
    PADDLE_ENFORCE(x_var != nullptr);

    auto &x_tensor = x_var->Get<framework::LoDTensor>();
    auto &dx_tensor = *dx_var->GetMutable<framework::LoDTensor>();
    dx_tensor.Resize(x_tensor.dims());
    dx_tensor.mutable_data(x_tensor.place(), x_tensor.type());

D
dzhwinter 已提交
138
    // get device context from pool
Y
Yang Yu 已提交
139 140
    platform::DeviceContextPool &pool = platform::DeviceContextPool::Instance();
    auto &dev_ctx = *pool.Get(place);
D
dzhwinter 已提交
141

Y
Yang Yu 已提交
142 143 144 145 146
    if (dout_var == nullptr) {  // dx_tensor fill zero
      math::set_constant(dev_ctx, &dx_tensor, 0.0f);
    } else {
      auto &dout_tensor = dout_var->Get<framework::LoDTensor>();
      auto height = dout_tensor.dims()[0];
C
chengduo 已提交
147 148 149 150 151
      if (height != 0) {
        auto slice = dx_tensor.Slice(0, static_cast<int>(height));
        framework::TensorCopy(dout_tensor, dout_tensor.place(), dev_ctx,
                              &slice);
      }
Y
Refine  
Yang Yu 已提交
152
      if (dx_tensor.dims()[0] > height) {
Y
Yang Yu 已提交
153
        auto rest_tensor = dx_tensor.Slice(
Y
Refine  
Yang Yu 已提交
154
            static_cast<int>(height), static_cast<int>(dx_tensor.dims()[0]));
Y
Yang Yu 已提交
155 156 157
        math::set_constant(dev_ctx, &rest_tensor, 0.0f);
      }
    }
158
    dx_tensor.set_lod(x_tensor.lod());
Y
Yang Yu 已提交
159 160 161
  }
};

Y
Yang Yu 已提交
162
class ShrinkRNNMemoryGradInferShape : public framework::InferShapeBase {
Y
Yang Yu 已提交
163 164 165 166 167 168
 public:
  void operator()(framework::InferShapeContext *context) const override {
    PADDLE_ENFORCE(context->HasInput("X"));
    PADDLE_ENFORCE(context->HasOutput(framework::GradVarName("X")));
    context->SetOutputDim(framework::GradVarName("X"),
                          context->GetInputDim("X"));
169
    context->ShareLoD("X", framework::GradVarName("X"));
Y
Yang Yu 已提交
170 171 172
  }
};

Y
Yang Yu 已提交
173
class ShrinkRNNGradOpMaker : public framework::SingleGradOpDescMaker {
Y
Yang Yu 已提交
174 175 176 177
 public:
  using framework::SingleGradOpDescMaker::SingleGradOpDescMaker;

 protected:
Y
Yu Yang 已提交
178 179
  std::unique_ptr<framework::OpDesc> Apply() const override {
    auto *op = new framework::OpDesc();
Y
Yang Yu 已提交
180
    op->SetType("shrink_rnn_memory_grad");
Y
Yang Yu 已提交
181 182 183 184
    op->SetInput("X", Input("X"));
    op->SetInput(framework::GradVarName("Out"), OutputGrad("Out"));
    op->SetOutput(framework::GradVarName("X"), InputGrad("X"));
    op->SetAttrMap(Attrs());
Y
Yu Yang 已提交
185
    return std::unique_ptr<framework::OpDesc>(op);
Y
Yang Yu 已提交
186 187 188 189 190 191 192
  }
};

}  // namespace operators
}  // namespace paddle

namespace ops = paddle::operators;
Y
Yang Yu 已提交
193 194 195 196 197
REGISTER_OPERATOR(shrink_rnn_memory, ops::ShrinkRNNMemoryOp,
                  ops::ShrinkRNNMemoryInferShape,
                  ops::ShrinkRNNMemoryOpProtoMaker, ops::ShrinkRNNGradOpMaker);
REGISTER_OPERATOR(shrink_rnn_memory_grad, ops::ShrinkRNNMemoryGradOp,
                  ops::ShrinkRNNMemoryGradInferShape);