ProcessGroupHeter.cc 13.8 KB
Newer Older
L
lilong12 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58
// Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
//     http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.

#include "paddle/fluid/distributed/collective/ProcessGroupHeter.h"
#include "paddle/fluid/platform/device/gpu/nccl_helper.h"
#include "paddle/fluid/platform/place.h"
#include "paddle/phi/api/include/api.h"
#include "paddle/phi/common/place.h"

constexpr int64_t kWaitBlockTImeout = 10;

namespace paddle {
namespace distributed {

using Place = paddle::platform::Place;

std::shared_ptr<ProcessGroupHeter::HeterTask> ProcessGroupHeter::CreateTask(
    int rank, CommType comm_type, const std::vector<Tensor>& inputs) {
  return std::make_shared<ProcessGroupHeter::HeterTask>(rank, comm_type,
                                                        inputs);
}

ProcessGroupHeter::HeterTask::HeterTask(int rank, CommType CommType,
                                        const std::vector<Tensor>& inputs)
    : Task(rank, inputs, CommType) {}

ProcessGroupHeter::HeterTask::~HeterTask() {}

bool ProcessGroupHeter::HeterTask::IsCompleted() { return true; }

// TODO(sheniang03): Add timeout for wait, now timeout unused
bool ProcessGroupHeter::HeterTask::Wait(std::chrono::milliseconds timeout) {
  return true;
}

ProcessGroupHeter::ProcessGroupHeter(const std::shared_ptr<Store>& store,
                                     int rank, int size, int gid,
                                     int local_rank, int local_size,
                                     int gloo_rank, int gloo_size,
                                     bool with_switch,
                                     std::string switch_endpoint)
    : ProcessGroup(rank, size, gid),
      store_(store),
      local_rank_(local_rank),
      local_size_(local_size),
      gloo_rank_(gloo_rank),
      gloo_size_(gloo_size),
59 60
      with_switch_(with_switch),
      switch_endpoint_(switch_endpoint) {
L
lilong12 已提交
61 62 63 64 65 66 67
#if defined(PADDLE_WITH_NCCL)
  inner_pg_ = std::make_shared<ProcessGroupNCCL>(store, local_rank, local_size,
                                                 IGNORE_ID);
#elif defined(PADDLE_WITH_ASCEND_CL)
  inner_pg_ = std::make_shared<ProcessGroupHCCL>(store, local_rank, local_size,
                                                 IGNORE_ID);
#else
68
  PADDLE_THROW(platform::errors::Fatal(
L
lilong12 已提交
69 70
      "ProcessGroupHeter only supports NCCL and HCCL now.");
#endif
71
  if (local_rank_ == 0 && !with_switch_) {
L
lilong12 已提交
72 73 74 75 76 77 78
    auto opts = ProcessGroupGloo::GlooOptions::create();
    opts->device = ProcessGroupGloo::createDefaultDevice();
    inter_pg_ = std::make_shared<ProcessGroupGloo>(store, gloo_rank_,
                                                   gloo_size_, IGNORE_ID, opts);
  }
}

79 80 81 82 83 84 85 86 87
template <typename T>
static void _do_add(T* dst, T* src, size_t size) {
  for (size_t i = 0; i < size; i++) {
    *dst += *src;
    dst++;
    src++;
  }
}

L
lilong12 已提交
88 89 90 91 92 93 94 95 96 97 98 99 100 101
std::shared_ptr<ProcessGroup::Task> ProcessGroupHeter::AllReduce(
    std::vector<Tensor>& tensors, const AllreduceOptions& opts) {
#if defined(PADDLE_WITH_NCCL)
  PADDLE_ENFORCE_EQ(
      CheckTensorsInCudaPlace(tensors), true,
      platform::errors::InvalidArgument("All inputs should be in CudaPlace."));
#endif

  // Step1: do allreduce in inner cluster
  auto task = inner_pg_->AllReduce(tensors, opts);
  task->Wait();

  // Step2: copy tensors to CPU
  if (local_rank_ == 0) {
102 103
    std::vector<Tensor> cpu_tensors;
    cpu_tensors.reserve(tensors.size());
L
lilong12 已提交
104 105 106
    for (size_t i = 0; i < tensors.size(); i++) {
      auto dense_gpu_tensor =
          std::dynamic_pointer_cast<phi::DenseTensor>(tensors[i].impl());
107 108 109 110 111 112 113 114 115 116
      phi::DenseTensorMeta meta = phi::DenseTensorMeta(
          dense_gpu_tensor->dtype(), dense_gpu_tensor->dims());
      std::shared_ptr<phi::DenseTensor> dense_cpu_tensor =
          std::make_shared<phi::DenseTensor>(
              std::make_unique<paddle::experimental::DefaultAllocator>(
                  paddle::platform::CPUPlace())
                  .get(),
              meta);
      dense_cpu_tensor->ResizeAndAllocate(dense_gpu_tensor->dims());
      cpu_tensors[i] = paddle::experimental::Tensor(dense_cpu_tensor);
L
lilong12 已提交
117 118 119 120 121
      framework::TensorCopySync(*dense_gpu_tensor, platform::CPUPlace(),
                                dense_cpu_tensor.get());
    }
    // Step3: do inter cluster allreduce
    if (with_switch_) {
122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176
      if (local_rank_ == 0) {
        HeterClient* client_ =
            HeterClient::GetInstance({switch_endpoint_}, {}, 0).get();
        auto dense_cpu_tensor =
            std::dynamic_pointer_cast<phi::DenseTensor>(cpu_tensors[0].impl());
        std::vector<int> send_size;
        send_size.push_back(dense_cpu_tensor->numel());
        int ret = client_->Send(
            gid_, {dense_cpu_tensor->name()}, send_size,
            dense_cpu_tensor->data(),
            dense_cpu_tensor->numel() *
                framework::DataTypeSize(dense_cpu_tensor->dtype()));
        PADDLE_ENFORCE_EQ(ret, 0, platform::errors::PreconditionNotMet(
                                      "Send to the switch module error."));
        phi::DenseTensorMeta meta = phi::DenseTensorMeta(
            dense_cpu_tensor->dtype(), dense_cpu_tensor->dims());
        std::shared_ptr<phi::DenseTensor> dense_cpu_tensor2 =
            std::make_shared<phi::DenseTensor>(
                std::make_unique<paddle::experimental::DefaultAllocator>(
                    paddle::platform::CPUPlace())
                    .get(),
                meta);
        dense_cpu_tensor2->ResizeAndAllocate(dense_cpu_tensor->dims());
        Tensor cpu_tensor_temp =
            paddle::experimental::Tensor(dense_cpu_tensor2);
        ret = client_->Recv(
            gid_, {dense_cpu_tensor->name()}, dense_cpu_tensor2->data(),
            dense_cpu_tensor2->numel() *
                framework::DataTypeSize(dense_cpu_tensor2->dtype()));
        PADDLE_ENFORCE_EQ(ret, 0, platform::errors::PreconditionNotMet(
                                      "Recv from the switch module error."));

        switch (dense_cpu_tensor->dtype()) {
          case DataType::FLOAT32:
            _do_add<float>(reinterpret_cast<float*>(dense_cpu_tensor->data()),
                           reinterpret_cast<float*>(dense_cpu_tensor2->data()),
                           dense_cpu_tensor->numel());
            break;
          case DataType::FLOAT64:
            _do_add<double>(
                reinterpret_cast<double*>(dense_cpu_tensor->data()),
                reinterpret_cast<double*>(dense_cpu_tensor2->data()),
                dense_cpu_tensor->numel());
            break;
          case DataType::INT32:
            _do_add<int>(reinterpret_cast<int*>(dense_cpu_tensor->data()),
                         reinterpret_cast<int*>(dense_cpu_tensor2->data()),
                         dense_cpu_tensor->numel());
            break;
          default:
            PADDLE_THROW(platform::errors::PreconditionNotMet(
                "Unsupported data type (%s) to do add.",
                framework::DataType2String(dense_cpu_tensor->dtype())));
        }
      }
L
lilong12 已提交
177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214
    } else {
      auto gloo_task = inter_pg_->AllReduce(cpu_tensors, opts);
      gloo_task->Wait();
    }
    // Step4: copy cpu tensors to gpu
    // copy cpu tensors to gpu
    for (size_t i = 0; i < tensors.size(); i++) {
      auto dense_gpu_tensor =
          std::dynamic_pointer_cast<phi::DenseTensor>(tensors[i].impl());
      auto dense_cpu_tensor =
          std::dynamic_pointer_cast<phi::DenseTensor>(cpu_tensors[i].impl());
      framework::TensorCopySync(*dense_cpu_tensor, dense_cpu_tensor->place(),
                                dense_gpu_tensor.get());
    }
  }

  // Step5: broadcast among inner cluster
  auto b_opts = BroadcastOptions();
  b_opts.source_root = 0;
  auto broadcast_task = inner_pg_->Broadcast(tensors, b_opts);
  broadcast_task->Wait();
  return CreateTask(rank_, CommType::ALLREDUCE, tensors);
}

std::shared_ptr<ProcessGroup::Task> ProcessGroupHeter::Broadcast(
    std::vector<Tensor>& tensors, const BroadcastOptions& opts) {
#if defined(PADDLE_WITH_NCCL)
  PADDLE_ENFORCE_EQ(
      CheckTensorsInCudaPlace(tensors), true,
      platform::errors::InvalidArgument("All inputs should be in CudaPlace."));
#endif

  // Step1: do broadcast in inner cluster
  auto b_opts = BroadcastOptions();
  b_opts.source_root = 0;
  inner_pg_->Broadcast(tensors, b_opts);

  if (local_rank_ == 0) {
215 216
    std::vector<Tensor> cpu_tensors;
    cpu_tensors.reserve(tensors.size());
L
lilong12 已提交
217 218 219
    for (size_t i = 0; i < tensors.size(); i++) {
      auto dense_gpu_tensor =
          std::dynamic_pointer_cast<phi::DenseTensor>(tensors[i].impl());
220 221 222 223 224 225 226 227 228 229
      phi::DenseTensorMeta meta = phi::DenseTensorMeta(
          dense_gpu_tensor->dtype(), dense_gpu_tensor->dims());
      std::shared_ptr<phi::DenseTensor> dense_cpu_tensor =
          std::make_shared<phi::DenseTensor>(
              std::make_unique<paddle::experimental::DefaultAllocator>(
                  paddle::platform::CPUPlace())
                  .get(),
              meta);
      dense_cpu_tensor->ResizeAndAllocate(dense_gpu_tensor->dims());
      cpu_tensors[i] = paddle::experimental::Tensor(dense_cpu_tensor);
L
lilong12 已提交
230 231 232 233
      framework::TensorCopySync(*dense_gpu_tensor, platform::CPUPlace(),
                                dense_cpu_tensor.get());
    }
    if (with_switch_) {
234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265
      if (local_rank_ == 0) {
        HeterClient* client_ =
            HeterClient::GetInstance({switch_endpoint_}, {}, 0).get();
        auto dense_cpu_tensor =
            std::dynamic_pointer_cast<phi::DenseTensor>(cpu_tensors[0].impl());
        if (gloo_rank_ == 0) {
          std::vector<int> send_size;
          send_size.push_back(dense_cpu_tensor->numel());
          int ret = client_->Send(
              gid_, {dense_cpu_tensor->name()}, send_size,
              dense_cpu_tensor->data(),
              dense_cpu_tensor->numel() *
                  framework::DataTypeSize(dense_cpu_tensor->dtype()));
          PADDLE_ENFORCE_EQ(ret, 0, platform::errors::PreconditionNotMet(
                                        "Send to the switch module error."));
        } else {
          int ret = client_->Recv(
              gid_, {dense_cpu_tensor->name()}, dense_cpu_tensor->data(),
              dense_cpu_tensor->numel() *
                  framework::DataTypeSize(dense_cpu_tensor->dtype()));
          PADDLE_ENFORCE_EQ(ret, 0,
                            platform::errors::PreconditionNotMet(
                                "Receive from the switch module error."));
          ret = client_->Recv(
              gid_, {dense_cpu_tensor->name()}, dense_cpu_tensor->data(),
              dense_cpu_tensor->numel() *
                  framework::DataTypeSize(dense_cpu_tensor->dtype()));
          PADDLE_ENFORCE_EQ(ret, 0,
                            platform::errors::PreconditionNotMet(
                                "Receive from the switch module error."));
        }
      }
L
lilong12 已提交
266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289
    } else {
      auto gloo_task = inter_pg_->Broadcast(cpu_tensors, opts);
      gloo_task->Wait();
    }
    for (size_t i = 0; i < tensors.size(); i++) {
      auto dense_gpu_tensor =
          std::dynamic_pointer_cast<phi::DenseTensor>(tensors[i].impl());
      auto dense_cpu_tensor =
          std::dynamic_pointer_cast<phi::DenseTensor>(cpu_tensors[i].impl());
      framework::TensorCopySync(*dense_cpu_tensor, dense_cpu_tensor->place(),
                                dense_gpu_tensor.get());
    }
  }
  auto broadcast_task = inner_pg_->Broadcast(tensors, b_opts);
  broadcast_task->Wait();
  return CreateTask(rank_, CommType::BROADCAST, tensors);
}

void ProcessGroupHeter::Broadcast(const phi::DenseTensor* in,
                                  phi::DenseTensor* out) {
  // Step1: do broadcast in inner cluster
  inner_pg_->Broadcast(in, out);

  if (local_rank_ == 0) {
290 291 292 293 294 295 296 297 298
    phi::DenseTensorMeta meta = phi::DenseTensorMeta(in->dtype(), in->dims());
    std::shared_ptr<phi::DenseTensor> dense_cpu_tensor =
        std::make_shared<phi::DenseTensor>(
            std::make_unique<paddle::experimental::DefaultAllocator>(
                paddle::platform::CPUPlace())
                .get(),
            meta);
    dense_cpu_tensor->ResizeAndAllocate(in->dims());
    Tensor cpu_tensor = paddle::experimental::Tensor(dense_cpu_tensor);
L
lilong12 已提交
299 300 301
    framework::TensorCopySync(*in, platform::CPUPlace(),
                              dense_cpu_tensor.get());
    if (with_switch_) {
302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321
      if (local_rank_ == 0) {
        HeterClient* client_ =
            HeterClient::GetInstance({switch_endpoint_}, {}, 0).get();
        if (gloo_rank_ == 0) {
          std::vector<int> send_size;
          send_size.push_back(in->numel());
          int ret = client_->Send(
              gid_, {in->name()}, send_size, dense_cpu_tensor->data(),
              in->numel() * framework::DataTypeSize(in->dtype()));
          PADDLE_ENFORCE_EQ(ret, 0, platform::errors::PreconditionNotMet(
                                        "Send to the switch module error."));
        } else {
          int ret =
              client_->Recv(gid_, {in->name()}, dense_cpu_tensor->data(),
                            in->numel() * framework::DataTypeSize(in->dtype()));
          PADDLE_ENFORCE_EQ(ret, 0,
                            platform::errors::PreconditionNotMet(
                                "Receive from the switch module error."));
        }
      }
L
lilong12 已提交
322 323
    } else {
      std::vector<Tensor> cpu_tensors = {cpu_tensor};
324 325
      auto gloo_task = inter_pg_->Broadcast(cpu_tensors);
      gloo_task->Wait();
L
lilong12 已提交
326
    }
327
    framework::TensorCopySync(*dense_cpu_tensor, out->place(), out);
L
lilong12 已提交
328 329 330 331 332 333
  }
  inner_pg_->Broadcast(out, out);
}

}  //  namespace distributed
}  //  namespace paddle