while_op.cc 16.1 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13
// Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
//     http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
14 15

#include <vector>
Y
Yi Wang 已提交
16 17 18 19
#include "paddle/fluid/framework/executor.h"
#include "paddle/fluid/framework/lod_tensor_array.h"
#include "paddle/fluid/framework/op_registry.h"
#include "paddle/fluid/framework/operator.h"
S
sneaxiy 已提交
20
#include "paddle/fluid/framework/var_type.h"
Y
Yi Wang 已提交
21
#include "paddle/fluid/operators/detail/safe_ref.h"
22 23 24 25 26 27 28

namespace paddle {
namespace operators {

using StepScopeVar = std::vector<framework::Scope *>;
using LoDTensor = framework::LoDTensor;

Y
Yang Yu 已提交
29 30 31 32 33 34
static constexpr char kStepBlock[] = "sub_block";
static constexpr char kCondition[] = "Condition";
static constexpr char kStepScopes[] = "StepScopes";
static constexpr char kX[] = "X";
static constexpr char kXGRAD[] = "X@GRAD";
static constexpr char kOutputs[] = "Out";
35 36 37 38 39 40 41 42

class WhileOp : public framework::OperatorBase {
 public:
  WhileOp(const std::string &type, const framework::VariableNameMap &inputs,
          const framework::VariableNameMap &outputs,
          const framework::AttributeMap &attrs)
      : framework::OperatorBase(type, inputs, outputs, attrs) {}

43 44 45
 private:
  void RunImpl(const framework::Scope &scope,
               const platform::Place &dev_place) const override {
46 47 48 49
    PADDLE_ENFORCE_NOT_NULL(scope.FindVar(Input(kCondition)));
    auto &cond = scope.FindVar(Input(kCondition))->Get<LoDTensor>();
    PADDLE_ENFORCE_EQ(cond.dims(), paddle::framework::make_ddim({1}));

50
    framework::Executor executor(dev_place);
51
    auto *block = Attr<framework::BlockDesc *>(kStepBlock);
52

53 54 55 56 57
    auto *program = block->Program();

    auto step_scopes =
        scope.FindVar(Output(kStepScopes))->GetMutable<StepScopeVar>();

58 59
    PADDLE_ENFORCE(platform::is_cpu_place(cond.place()),
                   "Condition of while op must in CPU memory.");
X
Xin Pan 已提交
60

61
    bool is_test = Attr<bool>("is_test");
X
Xin Pan 已提交
62
    auto ctx = executor.Prepare(*program, block->ID());
63 64 65
    while (cond.data<bool>()[0]) {
      auto &current_scope = scope.NewScope();
      step_scopes->push_back(&current_scope);
C
chengduoZH 已提交
66
      executor.RunPreparedContext(ctx.get(), &current_scope, false, true, true);
67 68 69
      if (is_test) {
        scope.DeleteScope(&current_scope);
      }
70 71 72 73 74 75
    }
  }
};

class WhileOpMaker : public framework::OpProtoAndCheckerMaker {
 public:
Y
Yu Yang 已提交
76
  void Make() override {
Y
Yang Yu 已提交
77
    AddInput(kX,
78 79 80 81 82 83 84
             "A set of variables, which are required by operators inside the "
             "block of While Op.")
        .AsDuplicable();
    AddInput(
        kCondition,
        "(Bool) An scalar. When it's False, the While Op will be terminated.")
        .AsDuplicable();
85
    AddOutput(kOutputs,
86
              "A set of variables, which will be assigned with values "
87
              "generated by the operators inside the block of While Op.")
88 89 90 91 92
        .AsDuplicable();
    AddOutput(kStepScopes,
              "(StepScopeVar) A vector of local scope, which size equals the "
              "step number of While Op. The i'th scope storages temporary "
              "variables generated in the i'th step.");
93 94
    AddAttr<framework::BlockDesc *>(kStepBlock,
                                    "The step block inside WhileOp");
95 96 97 98
    AddAttr<bool>("is_test",
                  "(bool, default false) Set to true for inference only, false "
                  "for training. Some layers may run faster when this is true.")
        .SetDefault(false);
99 100 101 102 103 104 105 106 107 108 109 110
    AddComment(R"DOC(
)DOC");
  }
};

class WhileGradOp : public framework::OperatorBase {
 public:
  WhileGradOp(const std::string &type, const framework::VariableNameMap &inputs,
              const framework::VariableNameMap &outputs,
              const framework::AttributeMap &attrs)
      : framework::OperatorBase(type, inputs, outputs, attrs) {}

111 112 113
 private:
  void RunImpl(const framework::Scope &scope,
               const platform::Place &dev_place) const override {
114 115
    PADDLE_ENFORCE(!Attr<bool>("is_test"),
                   "GradOp is only callable when is_test is false");
116 117 118
    // get device context from pool
    platform::DeviceContextPool &pool = platform::DeviceContextPool::Instance();
    auto &dev_ctx = *pool.Get(dev_place);
119
    framework::Executor executor(dev_place);
120
    auto *block = Attr<framework::BlockDesc *>(kStepBlock);
121
    auto *program = block->Program();
X
Xin Pan 已提交
122
    auto ctx = executor.Prepare(*program, block->ID());
123 124 125 126

    auto *step_scopes =
        scope.FindVar(Input(kStepScopes))->GetMutable<StepScopeVar>();

127 128 129 130 131 132
    auto outside_og_names = Inputs(framework::GradVarName(kOutputs));
    auto inside_og_names =
        Attr<std::vector<std::string>>("original_output_grad");

    PADDLE_ENFORCE_EQ(outside_og_names.size(), inside_og_names.size());

133 134
    for (auto cur_scope_iter = step_scopes->rbegin();
         cur_scope_iter != step_scopes->rend(); ++cur_scope_iter) {
M
minqiyang 已提交
135 136
      VLOG(3) << "Start backward at time_step "
              << cur_scope_iter - step_scopes->rbegin();
137 138 139 140 141
      framework::Scope &cur_scope = **cur_scope_iter;
      // Link OG from outside to inside
      for (size_t i = 0; i < outside_og_names.size(); ++i) {
        auto outside_og_name = outside_og_names[i];
        auto inside_og_name = inside_og_names[i];
M
minqiyang 已提交
142 143
        VLOG(8) << "Linking outside " << outside_og_name << " --> inside "
                << inside_og_name;
144 145 146 147
        if (scope.FindVar(outside_og_name) == nullptr) {
          continue;
        }

148 149 150 151 152 153
        auto &og_outside =
            detail::Ref(scope.FindVar(outside_og_name),
                        "Cannot find Outside Gradient %s", outside_og_name);
        auto &og_inside =
            detail::Ref(cur_scope.Var(inside_og_name),
                        "Cannot find inside gradient %s", inside_og_name);
S
sneaxiy 已提交
154
        if (framework::IsType<framework::LoDTensor>(og_outside.Type())) {
155 156 157 158 159
          auto &outside_tensor = og_outside.Get<framework::LoDTensor>();
          auto &inside_tensor =
              detail::Ref(og_inside.GetMutable<framework::LoDTensor>());
          inside_tensor.set_lod(outside_tensor.lod());
          inside_tensor.ShareDataWith(outside_tensor);
S
sneaxiy 已提交
160 161
        } else if (framework::IsType<framework::LoDTensorArray>(
                       og_outside.Type())) {
162 163 164
          auto &outside_array = og_outside.Get<framework::LoDTensorArray>();
          auto &inside_array =
              detail::Ref(og_inside.GetMutable<framework::LoDTensorArray>());
M
minqiyang 已提交
165
          VLOG(8) << outside_og_name << " size = " << outside_array.size();
166 167 168
          inside_array.resize(outside_array.size());

          for (size_t j = 0; j < inside_array.size(); ++j) {
M
minqiyang 已提交
169
            VLOG(8) << j << " " << outside_array[j].numel();
170 171 172 173 174 175 176
            if (outside_array[j].numel() != 0) {
              inside_array[j].set_lod(outside_array[j].lod());
              inside_array[j].ShareDataWith(outside_array[j]);
            } else {
              PADDLE_ENFORCE_EQ(inside_array[j].numel(), 0);
            }
          }
177 178
        } else {
          PADDLE_THROW("Currently only support LoDTensor and LoDTensorArray.");
179 180
        }
      }
C
chengduoZH 已提交
181 182
      executor.RunPreparedContext(ctx.get(), *cur_scope_iter, false, true,
                                  true);
183

184 185 186
      // The Outputs(kXGRAD) contains the names of the gradient of parameters
      // and inputs.
      auto &pg_ig_names = Outputs(kXGRAD);
Y
Yang Yu 已提交
187
      auto &p_names = Inputs(kX);
188 189 190
      PADDLE_ENFORCE_EQ(pg_ig_names.size(), p_names.size());
      for (size_t param_id = 0; param_id < pg_ig_names.size(); ++param_id) {
        if (pg_ig_names[param_id] == framework::kEmptyVarName) {
191
          continue;  // parameter doesn't have gradient
192 193
        }
        auto inside_grad_name = framework::GradVarName(p_names[param_id]);
194

195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216
        // for some grad_op, their input doesn't have gradient,
        // for example lookup_table_grad_op, the input(Idx) doesn't have
        // gradient.
        auto pg_ig_var = cur_scope.FindVar(inside_grad_name);
        PADDLE_ENFORCE(pg_ig_var != nullptr);
        if (pg_ig_var->IsType<framework::LoDTensorArray>()) {
          auto pg_ig_lod_t_arr =
              pg_ig_var->GetMutable<framework::LoDTensorArray>();
          bool empty = true;
          for (auto &each : *pg_ig_lod_t_arr) {
            if (each.numel() != 0) {
              empty = false;
              break;
            }
          }
          if (empty) {
            LOG(WARNING) << pg_ig_names[param_id]
                         << " is not found in cur_scope.";
            continue;
          }
        }

217
        //  // TODO(tonyyang-svail): Not sure we need the following
218 219 220 221 222 223 224 225 226 227 228
        //  // If does not compute gradient of that variable inside rnn,
        //  just
        //  // continue
        //  if (local_var_names.find(inside_grad_name) ==
        //  local_var_names.end()) {
        //    continue;
        //  }

        // zero gradient variable in step 0
        if (cur_scope_iter == step_scopes->rbegin()) {
          auto *var = (*cur_scope_iter)->FindVar(inside_grad_name);
229
          PADDLE_ENFORCE_NOT_NULL(var, "Can not find var %s", inside_grad_name);
C
chengduoZH 已提交
230 231 232 233 234 235
          PADDLE_ENFORCE(
              var->IsType<framework::LoDTensorArray>() ||
                  var->IsType<LoDTensor>(),
              "Currently the type of var only can be LoDTensorArray, "
              "or LoDTensor, but the received var[%s] is %s.",
              inside_grad_name, var->Type().name());
236

237 238 239
          if (var->IsType<LoDTensor>()) {
            auto &inside_tensor = var->Get<framework::LoDTensor>();
            framework::AttributeMap attrs;
240
            attrs["dtype"] = framework::ToDataType(inside_tensor.type());
241 242 243
            attrs["shape"] = framework::vectorize2int(inside_tensor.dims());
            attrs["value"] = 0.0f;

244
            auto var_name = pg_ig_names[param_id];
245
            auto zero_op = framework::OpRegistry::CreateOp(
Y
Yiqun Liu 已提交
246
                "fill_constant", framework::VariableNameMap{},
247
                {{"Out", {var_name}}}, attrs);
248
            zero_op->Run(scope, dev_place);
249 250 251
            scope.FindVar(var_name)
                ->GetMutable<framework::LoDTensor>()
                ->set_lod(inside_tensor.lod());
252 253
          }
        }
254
        auto new_inside_name = cur_scope.Rename(inside_grad_name);
255
        auto sum_op = framework::OpRegistry::CreateOp(
256 257
            "sum", {{"X", {pg_ig_names[param_id], new_inside_name}}},
            {{"Out", {pg_ig_names[param_id]}}},
258
            framework::AttributeMap{{"use_mkldnn", {false}}});
259
        sum_op->Run(cur_scope, dev_place);
260
        cur_scope.Rename(new_inside_name, inside_grad_name);
261
      }
262 263
      dev_ctx.Wait();
      const_cast<framework::Scope &>(scope).DeleteScope(&cur_scope);
264 265 266 267 268 269 270 271 272
    }
  }
};

class WhileGradOpDescMaker : public framework::SingleGradOpDescMaker {
 public:
  using framework::SingleGradOpDescMaker::SingleGradOpDescMaker;

 protected:
273
  std::unique_ptr<framework::OpDesc> Apply() const override {
F
Update  
fengjiayi 已提交
274 275 276 277 278 279 280
    auto *while_grad = new framework::OpDesc();
    while_grad->SetType("while_grad");
    while_grad->SetInput(kX, Input(kX));
    while_grad->SetInput(kOutputs, Output(kOutputs));
    while_grad->SetInput(kStepScopes, Output(kStepScopes));

    auto *grad_block = this->grad_block_[0];
281 282
    auto *fwd_block = grad_block->ForwardBlock();
    auto *parent_block = grad_block->ParentBlock();
283 284 285

    // Not all of IGs will be generated by inner gradient operators of while op.
    // Ignore IGs that is not generated by the inside block.
F
Update  
fengjiayi 已提交
286 287 288 289
    std::unordered_set<std::string> inner_op_outputs;
    for (const auto *op : grad_block->AllOps()) {
      for (auto &oname : op->OutputArgumentNames()) {
        inner_op_outputs.insert(oname);
290 291
      }
    }
F
Update  
fengjiayi 已提交
292
    auto igs = InputGrad(kX, /*do not drop empty gradient*/ false);
293
    for (auto &each_ig : igs) {
F
Update  
fengjiayi 已提交
294
      if (inner_op_outputs.find(each_ig) == inner_op_outputs.end()) {
M
minqiyang 已提交
295
        VLOG(8) << "Ignore " << each_ig;
296 297 298
        each_ig = framework::kEmptyVarName;
      }
    }
F
Update  
fengjiayi 已提交
299
    while_grad->SetOutput(framework::GradVarName(kX), igs);
300 301 302 303

    // OG should be re-calculated by step blocks, since many outputs of while op
    // do not need to calculate gradients.
    std::unordered_set<std::string> block_ins;
F
fengjiayi 已提交
304 305 306 307 308 309 310
    block_ins.reserve(Input(kX).size() + Output(kOutputs).size());
    for (auto &p : Input(kX)) {
      block_ins.insert(p);
    }
    for (auto &o : Output(kOutputs)) {
      block_ins.insert(o);
    }
311
    std::unordered_set<std::string> output_grads;
F
Update  
fengjiayi 已提交
312 313 314 315
    for (const auto *op : grad_block->AllOps()) {
      for (auto &input_name : op->InputArgumentNames()) {
        // If the input of Op has been recorded or is generated by the forward
        // block, do not make it as input again.
316 317 318

        // The input is located in I/O or other op's outputs or the variable is
        // located in grad_block's parents
F
Update  
fengjiayi 已提交
319
        if (block_ins.find(input_name) != block_ins.end() ||
320 321
            (fwd_block->FindVarRecursive(input_name) != nullptr ||
             parent_block->FindVarRecursive(input_name) != nullptr)) {
322 323
          continue;
        }
324

325
        output_grads.insert(input_name);
326
      }
F
Update  
fengjiayi 已提交
327
      for (auto &output_name : op->OutputArgumentNames()) {
328
        block_ins.insert(output_name);
329 330
      }
    }
331

332 333 334 335 336
    std::vector<std::string> output_grads_list;
    output_grads_list.resize(output_grads.size());
    std::copy(output_grads.begin(), output_grads.end(),
              output_grads_list.begin());
    while_grad->SetInput(framework::GradVarName(kOutputs), output_grads_list);
F
Update  
fengjiayi 已提交
337 338

    while_grad->SetAttrMap(this->Attrs());
339
    while_grad->SetBlockAttr(kStepBlock, grad_block);
340 341
    // record the original output gradient names, since the gradient name of
    // while operator could be renamed.
342
    while_grad->SetAttr("original_output_grad", output_grads_list);
343

F
Update  
fengjiayi 已提交
344
    return std::unique_ptr<framework::OpDesc>(while_grad);
345 346 347
  }
};

348 349
class WhileGradOpVarTypeInference : public framework::VarTypeInference {
 public:
350 351
  void operator()(const framework::OpDesc &op_desc,
                  framework::BlockDesc *block) const override {
Y
Yang Yu 已提交
352
    auto p_names = op_desc.Input(kX);
353
    auto pg_ig_names = op_desc.Output(framework::GradVarName(kX));
354 355 356

    for (size_t i = 0; i < p_names.size(); ++i) {
      auto &p_var = detail::Ref(block->FindVarRecursive(p_names[i]));
357
      auto *g_var = block->FindVarRecursive(pg_ig_names[i]);
358
      if (g_var != nullptr) {  // Gradient could be @EMPTY@
M
minqiyang 已提交
359 360
        VLOG(5) << "Setting " << pg_ig_names[i] << " following " << p_names[i]
                << " type: " << p_var.GetType();
361 362 363 364 365 366 367 368 369 370
        g_var->SetType(p_var.GetType());
        g_var->SetDataType(p_var.GetDataType());
      }
    }
  }
};

class WhileGradOpShapeInference : public framework::InferShapeBase {
 public:
  void operator()(framework::InferShapeContext *ctx) const override {
Y
Yang Yu 已提交
371 372
    ctx->HasInputs(kX);
    ctx->HasOutputs(framework::GradVarName(kX));
373 374 375
    ctx->HasInputs(kOutputs);
    ctx->HasInputs(framework::GradVarName(kOutputs));

Y
Yang Yu 已提交
376
    auto p_names = ctx->Inputs(kX);
377
    auto pg_ig_names = ctx->Outputs(kXGRAD);
Y
Yang Yu 已提交
378
    auto var_types = ctx->GetInputsVarType(kX);
379 380 381
    std::vector<std::string> names_to_set;
    std::vector<framework::DDim> dims_to_set;
    for (size_t i = 0; i < p_names.size(); ++i) {
382
      if (pg_ig_names[i] == framework::kEmptyVarName) {
383 384
        continue;
      }
Y
Yang Yu 已提交
385
      auto dims = ctx->GetInputsElementDim(kX, i);
386
      if (var_types[i] == framework::proto::VarType::LOD_TENSOR) {
387
        names_to_set.push_back(pg_ig_names[i]);
388
        dims_to_set.push_back(dims);
389
      } else if (var_types[i] == framework::proto::VarType::LOD_TENSOR_ARRAY) {
390
        // not sure how to set the dim of LOD_TENSOR_ARRAY
391
        names_to_set.push_back(pg_ig_names[i]);
392
        dims_to_set.push_back(dims);
393 394 395 396 397 398
      }
    }
    ctx->SetDims(names_to_set, dims_to_set);
  }
};

399 400 401 402 403 404
}  // namespace operators
}  // namespace paddle

REGISTER_OPERATOR(while, paddle::operators::WhileOp,
                  paddle::operators::WhileOpMaker,
                  paddle::operators::WhileGradOpDescMaker);
405 406 407
REGISTER_OPERATOR(while_grad, paddle::operators::WhileGradOp,
                  paddle::operators::WhileGradOpShapeInference,
                  paddle::operators::WhileGradOpVarTypeInference);
新手
引导
客服 返回
顶部