ps_gpu_worker.cc 10.2 KB
Newer Older
T
Thunderbrook 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
/* Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

  http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */

#include "paddle/fluid/framework/device_worker.h"
#include "paddle/fluid/framework/device_worker_factory.h"
P
pangengzheng 已提交
17
#include "paddle/fluid/operators/isfinite_op.h"
T
Thunderbrook 已提交
18
#include "paddle/fluid/platform/cpu_helper.h"
19
#include "paddle/fluid/platform/lodtensor_printer.h"
T
Thunderbrook 已提交
20 21
#include "paddle/fluid/string/string_helper.h"

F
Fan Zhang 已提交
22 23
#if (defined PADDLE_WITH_NCCL || defined PADDLE_WITH_RCCL || \
     defined PADDLE_WITH_XPU_BKCL) &&                        \
24
    (defined PADDLE_WITH_PSLIB)
F
Fan Zhang 已提交
25
#ifdef PADDLE_WITH_CUDA
T
Thunderbrook 已提交
26
#include "paddle/fluid/platform/cuda_device_guard.h"
F
Fan Zhang 已提交
27
#endif
T
Thunderbrook 已提交
28 29 30 31 32 33 34 35 36 37 38

#if defined _WIN32 || defined __APPLE__
#else
#define _LINUX
#endif

namespace paddle {
namespace framework {

void PSGPUWorker::Initialize(const TrainerDesc& desc) {
  param_ = desc.downpour_param();
39
  dev_ctx_ = platform::DeviceContextPool::Instance().Get(place_);
T
Thunderbrook 已提交
40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125
  mpi_rank_ = desc.mpi_rank();
  trainer_desc_ = desc;
  for (int i = 0; i < param_.sparse_table_size(); ++i) {
    uint64_t table_id =
        static_cast<uint64_t>(param_.sparse_table(i).table_id());
    TableParameter table = param_.sparse_table(i);
    sparse_key_names_[table_id].resize(table.sparse_key_name_size());
    for (int j = 0; j < table.sparse_key_name_size(); ++j) {
      sparse_key_names_[table_id][j] = table.sparse_key_name(j);
    }
    sparse_value_names_[table_id].resize(table.sparse_value_name_size());
    for (int j = 0; j < table.sparse_value_name_size(); ++j) {
      sparse_value_names_[table_id][j] = table.sparse_value_name(j);
    }
    sparse_grad_names_[table_id].resize(table.sparse_grad_name_size());
    for (int j = 0; j < table.sparse_grad_name_size(); ++j) {
      sparse_grad_names_[table_id][j] = table.sparse_grad_name(j);
    }
    label_var_name_[table_id] = table.label_var_name();
    sparse_push_keys_[table_id] = std::vector<uint64_t>();
  }

  for (int i = 0; i < param_.dense_table_size(); ++i) {
    uint64_t table_id = static_cast<uint64_t>(param_.dense_table(i).table_id());
    auto table = param_.dense_table(i);
    dense_value_names_[table_id].resize(table.dense_value_name_size());
    for (int j = 0; j < table.dense_value_name_size(); ++j) {
      dense_value_names_[table_id][j] = table.dense_value_name(j);
    }
    dense_grad_names_[table_id].resize(table.dense_grad_name_size());
    for (int j = 0; j < table.dense_grad_name_size(); ++j) {
      dense_grad_names_[table_id][j] = table.dense_grad_name(j);
    }
  }

  skip_ops_.resize(param_.skip_ops_size());
  for (int i = 0; i < param_.skip_ops_size(); ++i) {
    skip_ops_[i] = param_.skip_ops(i);
  }
  for (int i = 0; i < param_.stat_var_names_size(); ++i) {
    stat_var_name_map_[param_.stat_var_names(i)] = 1;
  }

  need_to_push_sparse_ = param_.push_sparse();
  need_to_push_dense_ = param_.push_dense();

  fetch_config_ = desc.fetch_config();
  use_cvm_ = desc.use_cvm();
  // for sparse value accessor, embedding only
  no_cvm_ = desc.no_cvm();
  scale_datanorm_ = desc.scale_datanorm();
  dump_slot_ = desc.dump_slot();
  adjust_ins_weight_config_ = desc.adjust_ins_weight_config();
  for (int i = 0; i < desc.check_nan_var_names_size(); ++i) {
    check_nan_var_names_.push_back(desc.check_nan_var_names(i));
  }
  copy_table_config_ = desc.copy_table_config();
  for (int i = 0; i < copy_table_config_.src_sparse_tables_size(); ++i) {
    uint64_t src_table = copy_table_config_.src_sparse_tables(i);
    uint64_t dest_table = copy_table_config_.dest_sparse_tables(i);
    VLOG(3) << "copy_sparse_tables_ push back " << src_table << "->"
            << dest_table;
    copy_sparse_tables_.push_back(std::make_pair(src_table, dest_table));
  }
  for (int i = 0; i < copy_table_config_.src_dense_tables_size(); ++i) {
    uint64_t src_table = copy_table_config_.src_dense_tables(i);
    uint64_t dest_table = copy_table_config_.dest_dense_tables(i);
    VLOG(3) << "copy_dense_tables_ push back " << src_table << "->"
            << dest_table;
    copy_dense_tables_.push_back(std::make_pair(src_table, dest_table));
  }
  for (auto& m : copy_table_config_.table_denpendency_map()) {
    if (sparse_key_names_.find(m.key()) != sparse_key_names_.end()) {
      // currently only support one dependency
      for (auto& value : m.values()) {
        table_dependency_[m.key()] = value;
      }
    }
  }
}

void PSGPUWorker::SetChannelWriter(ChannelObject<std::string>* queue) {
  writer_.Reset(queue);
}

void PSGPUWorker::TrainFiles() {
126
  VLOG(0) << "Begin to train files";
T
Thunderbrook 已提交
127
  platform::SetNumThreads(1);
128 129 130 131
  platform::Timer timeline;
  timeline.Start();

  int total_ins_num = 0;
F
Fan Zhang 已提交
132
#if defined(PADDLE_WITH_NCCL) || defined(PADDLE_WITH_RCCL)
133
  platform::SetDeviceId(thread_id_);
F
Fan Zhang 已提交
134 135 136
#elif defined(PADDLE_WITH_XPU_BKCL)
  platform::SetXPUDeviceId(thread_id_);
#endif
D
danleifeng 已提交
137 138 139 140 141

  // how to accumulate fetched values here
  device_reader_->Start();
  int cur_batch;
  int batch_cnt = 0;
T
Thunderbrook 已提交
142
  while ((cur_batch = device_reader_->Next()) > 0) {
143
    total_ins_num += cur_batch;
T
Thunderbrook 已提交
144 145 146 147 148 149 150 151 152 153 154 155
    for (auto& op : ops_) {
      bool need_skip = false;
      for (auto t = 0u; t < skip_ops_.size(); ++t) {
        if (op->Type().find(skip_ops_[t]) != std::string::npos) {
          need_skip = true;
          break;
        }
      }
      if (!need_skip) {
        op->Run(*thread_scope_, place_);
      }
    }
T
Thunderbrook 已提交
156 157 158 159 160 161
    if (need_dump_field_) {
      DumpField(*thread_scope_, dump_mode_, dump_interval_);
    }
    if (need_dump_param_ && thread_id_ == 0) {
      DumpParam(*thread_scope_, batch_cnt);
    }
T
Thunderbrook 已提交
162

163 164 165 166 167
    for (std::string& var_name : check_nan_var_names_) {
      Variable* var = thread_scope_->FindVar(var_name);
      if (var == nullptr) {
        continue;
      }
168
      phi::DenseTensor* tensor = var->GetMutable<phi::DenseTensor>();
169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194
      if (tensor == nullptr || !tensor->IsInitialized()) {
        continue;
      }
      if (framework::TensorContainsInf(*tensor) ||
          framework::TensorContainsNAN(*tensor)) {
        static std::mutex mutex;
        {
          std::lock_guard<std::mutex> lock(mutex);
          VLOG(0) << "worker " << thread_id_ << ": " << var_name
                  << " cantains inf or nan";
          auto all_vars = thread_scope_->LocalVarNames();
          std::stringstream ss;
          ss << "====== worker " << thread_id_ << "======\n";
          for (auto& local_var : all_vars) {
            platform::PrintVar(thread_scope_, local_var, local_var, &ss);
            ss << "\n";
          }
          std::cout << ss.str() << std::endl;
          VLOG(0) << "worker " << thread_id_ << "print nan var done....";
        }
        sleep(600);
        exit(-1);
      }
    }

    dev_ctx_->Wait();
T
Thunderbrook 已提交
195 196
    PrintFetchVars();
    thread_scope_->DropKids();
T
Thunderbrook 已提交
197 198 199 200
    ++batch_cnt;
  }
  if (need_dump_field_ || need_dump_param_) {
    writer_.Flush();
T
Thunderbrook 已提交
201
  }
202
  timeline.Pause();
203
  VLOG(0) << "GpuPs worker " << thread_id_ << " train cost "
204
          << timeline.ElapsedSec() << " seconds, ins_num: " << total_ins_num;
T
Thunderbrook 已提交
205 206 207
  return;
}

208 209
void PSGPUWorker::TrainFilesWithProfiler() {
  platform::SetNumThreads(1);
210
  VLOG(0) << "Begin to train files with profiler";
211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237
  device_reader_->Start();
  std::vector<double> op_total_time;
  std::vector<std::string> op_name;
  for (auto& op : ops_) {
    bool need_skip = false;
    for (auto t = 0u; t < skip_ops_.size(); ++t) {
      if (op->Type().find(skip_ops_[t]) != std::string::npos) {
        need_skip = true;
        break;
      }
    }
    if (!need_skip) {
      op_name.push_back(op->Type());
    }
  }

  VLOG(3) << "op name size: " << op_name.size();
  op_total_time.resize(op_name.size());
  for (size_t i = 0; i < op_total_time.size(); ++i) {
    op_total_time[i] = 0.0;
  }
  platform::Timer timeline;
  double total_time = 0.0;
  double read_time = 0.0;
  int total_ins_num = 0;
  int cur_batch;
  timeline.Start();
F
Fan Zhang 已提交
238
#if defined(PADDLE_WITH_NCCL) || defined(PADDLE_WITH_RCCL)
239
  platform::SetDeviceId(thread_id_);
F
Fan Zhang 已提交
240 241 242
#elif defined(PADDLE_WITH_XPU_BKCL)
  platform::SetXPUDeviceId(thread_id_);
#endif
243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277
  while ((cur_batch = device_reader_->Next()) > 0) {
    total_ins_num += cur_batch;
    timeline.Pause();
    read_time += timeline.ElapsedSec();
    total_time += timeline.ElapsedSec();

    int run_op_idx = 0;
    dev_ctx_->Wait();
    for (auto& op : ops_) {
      bool need_skip = false;
      for (auto t = 0u; t < skip_ops_.size(); ++t) {
        if (op->Type().find(skip_ops_[t]) != std::string::npos) {
          need_skip = true;
          break;
        }
      }
      if (!need_skip) {
        timeline.Start();
        VLOG(3) << "Going to run op " << op_name[run_op_idx];
        op->Run(*thread_scope_, place_);
        dev_ctx_->Wait();
        VLOG(3) << "Op " << op_name[run_op_idx] << " Finished";
        timeline.Pause();
        op_total_time[run_op_idx++] += timeline.ElapsedSec();
        total_time += timeline.ElapsedSec();
      }
    }
    timeline.Start();
    PrintFetchVars();
    thread_scope_->DropKids();
    dev_ctx_->Wait();
    timeline.Pause();
    total_time += timeline.ElapsedSec();
    timeline.Start();
  }
278
  VLOG(0) << "GpuPs worker " << thread_id_ << " train cost " << total_time
279 280
          << " seconds, ins_num: " << total_ins_num;
  for (size_t i = 0; i < op_name.size(); ++i) {
281
    VLOG(0) << "card:" << thread_id_ << ", op: " << op_name[i]
282 283 284
            << ", mean time: " << op_total_time[i] / total_ins_num
            << "s, totol time:" << op_total_time[i] << "sec";
  }
285 286
  VLOG(0) << "card: " << thread_id_ << " read time: " << read_time
          << ", percent: " << read_time / total_time * 100;
287 288 289
  return;
}

T
Thunderbrook 已提交
290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311
void PSGPUWorker::ResetStat() {
  total_time_ = 0;
  read_time_ = 0;
  pack_time_ = 0;
  pull_sparse_local_time_ = 0;
  op_all_time_ = 0;
  xpu_op_time_ = 0;
  xpu_wait_time_ = 0;
  cpu_op_time_ = 0;
  collect_label_time_ = 0;
  fill_sparse_time_ = 0;
  push_sparse_time_ = 0;
  gpu_2_cpu_time_ = 0;
  cpu_2_gpu_time_ = 0;
  total_inst_ = 0;
}

void PSGPUWorker::ProduceTasks() { return; }

}  // end namespace framework
}  // end namespace paddle
#endif