beam_search_test.cc 4.8 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserved.

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

    http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */

#include "paddle/fluid/operators/math/beam_search.h"
W
wanghuancoder 已提交
16

17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95
#include <gtest/gtest.h>

void PrepareCPUTensors(paddle::framework::LoDTensor* ids,
                       paddle::framework::LoDTensor* scores,
                       paddle::framework::LoDTensor* pre_ids,
                       paddle::framework::LoDTensor* pre_scores) {
  // lod
  paddle::framework::LoD lod;
  std::vector<size_t> level0({0, 2, 4});
  std::vector<size_t> level1({0, 1, 2, 3, 4});
  lod.push_back(level0);
  lod.push_back(level1);
  ids->set_lod(lod);
  scores->set_lod(lod);

  auto dims = paddle::framework::make_ddim({4, 3});
  ids->Resize(dims);
  scores->Resize(dims);

  paddle::platform::CPUPlace place;
  auto* ids_data = ids->mutable_data<int64_t>(place);
  auto* scores_data = scores->mutable_data<float>(place);
  std::vector<int64_t> ids_vec_data({4, 2, 5, 2, 1, 3, 3, 5, 2, 8, 2, 1});
  std::vector<float> scores_vec_data(
      {0.6f, 0.3f, 0.5f, 0.2f, 0.3f, 0.1f, 0.9f, 0.5f, 0.1f, 0.7f, 0.5f, 0.1f});

  CHECK_EQ(static_cast<size_t>(ids->numel()), ids_vec_data.size());
  CHECK_EQ(static_cast<size_t>(ids->numel()), scores_vec_data.size());

  for (int i = 0; i < ids->numel(); i++) {
    ids_data[i] = ids_vec_data[i];
    scores_data[i] = scores_vec_data[i];
  }

  // pre_ids
  pre_ids->Resize(paddle::framework::make_ddim({4, 1}));
  for (int i = 0; i < 4; i++) {
    pre_ids->mutable_data<int64_t>(place)[i] = i + 1;
  }

  // pre_scores
  pre_scores->Resize(paddle::framework::make_ddim({4, 1}));
  for (int i = 0; i < 4; i++) {
    pre_scores->mutable_data<float>(place)[i] = 0.1 * (i + 1);
  }
}

template <typename DeviceContext, typename Place>
void TestBeamSearch() {
  paddle::framework::LoDTensor ids;
  paddle::framework::LoDTensor scores;
  paddle::framework::LoDTensor pre_ids;
  paddle::framework::LoDTensor pre_scores;

  auto* place = new Place();
  DeviceContext* context = new DeviceContext(*place);
  if (paddle::platform::is_cpu_place(*place)) {
    PrepareCPUTensors(&ids, &scores, &pre_ids, &pre_scores);
  } else {
    paddle::framework::LoDTensor cpu_ids;
    paddle::framework::LoDTensor cpu_scores;
    paddle::framework::LoDTensor cpu_pre_ids;
    paddle::framework::LoDTensor cpu_pre_scores;

    PrepareCPUTensors(&cpu_ids, &cpu_scores, &cpu_pre_ids, &cpu_pre_scores);

    TensorCopySync(cpu_ids, *place, &ids);
    TensorCopySync(cpu_scores, *place, &scores);
    TensorCopySync(cpu_pre_ids, *place, &pre_ids);
    TensorCopySync(cpu_pre_scores, *place, &pre_scores);

    ids.set_lod(cpu_ids.lod());
    scores.set_lod(cpu_scores.lod());
    pre_ids.set_lod(cpu_pre_ids.lod());
    pre_scores.set_lod(cpu_pre_scores.lod());
  }

  paddle::framework::LoDTensor selected_ids;
  paddle::framework::LoDTensor selected_scores;
96
  paddle::framework::LoDTensor parent_idx;
97 98 99 100 101 102

  size_t level = 0;
  size_t beam_size = 2;
  int end_id = 0;
  paddle::operators::math::BeamSearchFunctor<DeviceContext, float> beamsearch;
  beamsearch(*context, &pre_ids, &pre_scores, &ids, &scores, &selected_ids,
103
             &selected_scores, &parent_idx, level, beam_size, end_id, true);
104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136

  ASSERT_EQ(selected_ids.lod(), selected_scores.lod());

  paddle::framework::LoDTensor cpu_selected_ids;
  paddle::framework::LoDTensor cpu_selected_scores;
  if (paddle::platform::is_cpu_place(*place)) {
    cpu_selected_ids = selected_ids;
    cpu_selected_scores = selected_scores;
  } else {
    TensorCopySync(selected_ids, paddle::platform::CPUPlace(),
                   &cpu_selected_ids);
    TensorCopySync(selected_scores, paddle::platform::CPUPlace(),
                   &cpu_selected_scores);
    cpu_selected_ids.set_lod(selected_ids.lod());
    cpu_selected_scores.set_lod(selected_scores.lod());
  }

  std::vector<int64_t> expected_ids({4, 5, 3, 8});
  std::vector<float> expected_scores({0.6f, 0.5f, 0.9f, 0.7f});
  for (int i = 0; i < 4; i++) {
    ASSERT_EQ(expected_ids[i], cpu_selected_ids.data<int64_t>()[i]);
    ASSERT_EQ(expected_scores[i], cpu_selected_scores.data<float>()[i]);
  }

  delete place;
  delete context;
}

TEST(BeamSearch, CPU) {
  TestBeamSearch<paddle::platform::CPUDeviceContext,
                 paddle::platform::CPUPlace>();
}

137
#if defined(PADDLE_WITH_CUDA) || defined(PADDLE_WITH_HIP)
138 139 140 141 142
TEST(BeamSearch, GPU) {
  TestBeamSearch<paddle::platform::CUDADeviceContext,
                 paddle::platform::CUDAPlace>();
}
#endif