Fork自 PaddlePaddle / Paddle
<!DOCTYPE html> <html lang=en> <head> <meta charset=UTF-8> <title>PaddlePaddle</title> <link rel=stylesheet href=./css/home.css> <script>var _hmt=_hmt||[];!function(){var e=document.createElement("script");e.src="//hm.baidu.com/hm.js?b9a314ab40d04d805655aab1deee08ba";var a=document.getElementsByTagName("script")[0];a.parentNode.insertBefore(e,a)}()</script> </head> <body> <script>function browserRedirect(){var i=navigator.userAgent.toLowerCase(),e="ipad"==i.match(/ipad/i),d="iphone os"==i.match(/iphone os/i),o="midp"==i.match(/midp/i),a="rv:1.2.3.4"==i.match(/rv:1.2.3.4/i),t="ucweb"==i.match(/ucweb/i),w="android"==i.match(/android/i),r="windows ce"==i.match(/windows ce/i),c="windows mobile"==i.match(/windows mobile/i);window.location.href=e||d||o||a||t||w||r||c?"http://www.paddlepaddle.org/mobile/index.html":"http://www.paddlepaddle.org/index.html"}browserRedirect()</script> <header class=site-header> <nav class=row> <div class=logo> <img src=> </div> <nav class=top-nav> <ul class=site-links> <li><a class=active>Home</a></li> <li><a href=http://book.paddlepaddle.org/index.html target=_blank>Quick Start</a></li> <li><a href=http://www.paddlepaddle.org/doc/howto/index_en.html target=_blank>Documents</a></li> <li class=version-switcher> <a>Version<i class=fa aria-hidden=true></i></a> <ul> <li><a href=http://www.paddlepaddle.org/release/0.10.0/doc/ target=_blank>0.10.0</a></li> <li><a href=http://www.paddlepaddle.org/release_doc/0.9.0/doc/ target=_blank>0.9.0</a></li> </ul> </li> </ul> </nav> <nav class=right-nav> <div class=language-switcher> <a href=./index.cn.html>中文</a> </div> <div class=github-fork> <a href=https://github.com/PaddlePaddle/Paddle target=_blank> <i class="fa fa-github" aria-hidden=true></i> <span>Github</span> </a> </div> </nav> </nav> </header> <section class=head-banner> <div class="row banner"> <h1>Easy to Learn and Use Distributed</h1> <h1>Deep Learning Platform</h1> <p>Providing deep learning algorithms for 100+ products</p> <div> <a class=quick-start href=http://book.paddlepaddle.org/index.html target=_blank>Quick Start</a> </div> </div> </section> <section class=services> <div class=row> <h2><span>Extensive Algorithmic Service</span></h2> <p class=sub-title>Easy to use, efficient, flexible, and scalable</p> </div> <div class=row> <div> <img class=service-icon src=./images/service-1.png> </div> <div> <div class=service-desc> <h3>Machine Vision</h3> <p>The convoluted neural network can identify the main object in the image and output the classification result</p> <div> <a role=button class=view-more href=http://book.paddlepaddle.org/03.image_classification/index.html target=_blank>Read more ></a> </div> </div> </div> </div> <div class=row> <div> <div class=service-desc> <h3>Natural Language Understanding</h3> <p>Using the LSTM network to analyze the positive and negative aspects of the commenter's emotions from IMDB film review</p> <div> <a role=button class=view-more href=http://book.paddlepaddle.org/06.understand_sentiment/index.html target=_blank>Read more ></a> </div> </div> </div> <div> <img class=service-icon src=./images/service-2.png> </div> </div> <div class=row> <div> <img class=service-icon src=./images/service-3.png> </div> <div> <div class=service-desc> <h3>Search Engine Ranking</h3> <p>Analyze user characteristics, movie features, rating scores, predict new users' ratings for different movies</p> <div> <a role=button class=view-more href=http://book.paddlepaddle.org/05.recommender_system/index.html target=_blank>Read more ></a> </div> </div> </div> </div> </section> <section class=features> <div class=row> <h2><span>Technology and Service Advantages</span></h2> </div> <div class=row> <div class=feature-desc> <div class=feature-icon> <img src=> </div> <h3>Ease of use</h3> <p>Provids an intuitive and flexible interface for loading data and specifying model structure.</p> </div> <div class=feature-desc> <div class=feature-icon> <img src=> </div> <h3>Flexibility</h3> <p>Supports CNN, RNN and other neural network. Easy to configure complex models.</p> </div> <div class=feature-desc> <div class=feature-icon> <img src=> </div> <h3>Efficiency</h3> <p>Efficient optimization of computing, memory, communications and architecture.</p> </div> <div class=feature-desc> <div class=feature-icon> <img src=> </div> <h3>Scalability</h3> <p>Easy to use many CPUs/GPUs and machines to speed up your training and handle large-scale data easily.</p> </div> </div> </section> <section class=get-started> <div class=row> <h2>Start Using PaddlePaddle</h2> <p>Easy to Learn and Use Distributed Deep Learning Platform</p> <div> <a role=button class=quick-start href=http://book.paddlepaddle.org/index.html target=_blank>Quick Start</a> </div> </div> </section> <footer class=footer-nav> <div class=row> <p class=copyright>©Copyright 2017, PaddlePaddle developers.</p> </div> </footer> <script src=./js/common.bundle.js></script> <script src=./js/home.bundle.js></script> </body> </html>