gaussian_random_kernel.cu 3.7 KB
Newer Older
F
furnace 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85
// Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
//     http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.

#include "paddle/phi/kernels/gaussian_random_kernel.h"

#include <thrust/device_vector.h>
#include <thrust/host_vector.h>
#include <thrust/random.h>
#include <thrust/transform.h>

#include "paddle/phi/backends/gpu/gpu_context.h"
#include "paddle/phi/core/dense_tensor.h"
#include "paddle/phi/core/kernel_registry.h"
#include "paddle/phi/kernels/funcs/distribution_helper.h"
#include "paddle/phi/kernels/funcs/index_impl.cu.h"

#include "paddle/fluid/framework/generator.h"

DECLARE_bool(use_curand);

namespace phi {

template <typename T>
struct GaussianGenerator {
  T mean_, std_;
  unsigned int seed_;
  unsigned int offset_ = 0;

  __host__ __device__ GaussianGenerator(T mean, T std, int seed)
      : mean_(mean), std_(std), seed_(seed) {}

  __host__ __device__ GaussianGenerator(T mean, T std, int seed, int offset)
      : mean_(mean), std_(std), seed_(seed), offset_(offset) {}

  __host__ __device__ T operator()(const unsigned int n) const {
    thrust::minstd_rand rng;
    rng.seed(seed_);
    using MT = typename phi::kps::details::MPTypeTrait<T>::Type;
    thrust::normal_distribution<MT> dist(mean_, std_);
    unsigned int new_n = n + offset_;
    rng.discard(new_n);
    MT out = dist(rng);
    return static_cast<T>(out);
  }
};

template <typename T, typename Context>
void GaussianRandomKernel(const Context& dev_ctx,
                          const ScalarArray& shape,
                          float mean,
                          float std,
                          int seed,
                          DataType dtype,
                          DenseTensor* out) {
  auto tensor = out;

  bool seed_flag = false;
  if (seed == 0) {
    std::random_device rd;
    seed = rd();
    seed_flag = true;
  }

  tensor->Resize(phi::make_ddim(shape.GetData()));

  T* data = dev_ctx.template Alloc<T>(tensor);

  int64_t size = tensor->numel();

  int device_id = dev_ctx.GetPlace().GetDeviceId();
  auto gen_cuda = paddle::framework::GetDefaultCUDAGenerator(device_id);

  if (gen_cuda->GetIsInitPy() && seed_flag) {
    if (FLAGS_use_curand) {
86
      using MT = typename phi::kps::details::MPTypeTrait<T>::Type;
F
furnace 已提交
87 88 89 90 91 92
      funcs::normal_distribution<MT> dist;
      funcs::normal_transform<MT> trans(mean, std);
      funcs::distribution_and_transform<T>(dev_ctx, tensor, dist, trans);
    } else {
      auto seed_offset = gen_cuda->IncrementOffset(1);
      int64_t gen_offset = size * seed_offset.second;
93 94 95 96 97
      auto func = GaussianGenerator<T>(static_cast<T>(mean),
                                       static_cast<T>(std),
                                       seed_offset.first,
                                       gen_offset);
      IndexKernel<T, GaussianGenerator<T>>(dev_ctx, tensor, func);
F
furnace 已提交
98 99
    }
  } else {
100 101 102
    auto func =
        GaussianGenerator<T>(static_cast<T>(mean), static_cast<T>(std), seed);
    IndexKernel<T, GaussianGenerator<T>>(dev_ctx, tensor, func);
F
furnace 已提交
103 104 105 106 107 108 109 110 111 112 113 114
  }
}

}  // namespace phi

PD_REGISTER_KERNEL(gaussian_random,
                   GPU,
                   ALL_LAYOUT,
                   phi::GaussianRandomKernel,
                   phi::dtype::float16,
                   float,
                   double) {}